• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Similarity-Based Pattern Analysis and Recognition » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Similarity-Based Pattern Analysis and Recognition

ISBN-13: 9781447169505 / Angielski / Miękka / 2016 / 291 str.

Marcello Pelillo
Similarity-Based Pattern Analysis and Recognition Marcello Pelillo 9781447169505 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Similarity-Based Pattern Analysis and Recognition

ISBN-13: 9781447169505 / Angielski / Miękka / 2016 / 291 str.

Marcello Pelillo
cena 403,47 zł
(netto: 384,26 VAT:  5%)

Najniższa cena z 30 dni: 385,52 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relational and similarity information.This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models.Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a "kernel tailoring" approach and a strategy for learning similarities directly from training data; describes various methods for "structure-preserving" embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications that provide assistance in the diagnosis of physical and mental illnesses from tissue microarray images and MRI images.This pioneering work is essential reading for graduate students and researchers seeking an introduction to this important and diverse subject.

Kategorie:
Informatyka
Kategorie BISAC:
Computers > Artificial Intelligence - Computer Vision & Pattern Recognition
Computers > Optical Data Processing
Wydawca:
Springer
Seria wydawnicza:
Advances in Computer Vision and Pattern Recognition
Język:
Angielski
ISBN-13:
9781447169505
Rok wydania:
2016
Wydanie:
Softcover Repri
Numer serii:
000418995
Ilość stron:
291
Waga:
0.43 kg
Wymiary:
23.39 x 15.6 x 1.65
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Introduction: The SIMBAD Project
Marcello Pelillo

Part I: Foundational Issues

Non-Euclidean Dissimilarities: Causes, Embedding and Informativeness
Robert P. W. Duin, Elżbieta Pękalska, and Marco Loog

SIMBAD: Emergence of Pattern Similarity
Joachim M. Buhmann

Part II: Deriving Similarities for Non-vectorial Data

On the Combination of Information Theoretic Kernels with Generative Embeddings
Pedro M. Q. Aguiar, Manuele Bicego, Umberto Castellani, Mário A. T. Figueiredo, André T. Martins, Vittorio Murino, Alessandro Perina, and Aydın Ulaş

Learning Similarities from Examples under the Evidence Accumulation Clustering Paradigm
Ana L. N. Fred, André Lourenço, Helena Aidos, Samuel Rota Bulò, Nicola Rebagliati, Mário Figueiredo, and Marcello Pelillo 

Part III: Embedding and Beyond

Geometricity and Embedding
Peng Ren, Furqan Aziz, Lin Han, Eliza Xu, Richard C. Wilson, and Edwin R. Hancock

Structure Preserving Embedding of Dissimilarity Data
Volker Roth, Thomas J. Fuchs, Julia E. Vogt, Sandhya Prabhakaran, and Joachim M. Buhmann

A Game-Theoretic Approach to Pairwise Clustering and Matching
Marcello Pelillo, Samuel Rota Bulò, Andrea Torsello, Andrea Albarelli, and Emanuele Rodolà

Part IV: Applications

Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma
Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth, and Joachim M. Buhmann

Analysis of Brain Magnetic Resonance (MR) Scans for the Diagnosis of Mental Illness
Aydın Ulaş, Umberto Castellani, Manuele Bicego, Vittorio Murino, Marcella Bellani, Michele Tansella, and Paolo Brambilla

The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relational and similarity information.

This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models.

Topics and features:

  • Explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms
  • Reviews similarity measures for non-vectorial data, considering both a “kernel tailoring” approach and a strategy for learning similarities directly from training data
  • Describes various methods for “structure-preserving” embeddings of structured data
  • Formulates classical pattern recognition problems from a purely game-theoretic perspective
  • Examines two large-scale biomedical imaging applications that provide assistance in the diagnosis of physical and mental illnesses from tissue microarray images and MRI images

This pioneering work is essential reading for graduate students and researchers seeking an introduction to this important and diverse subject.

Marcello Pelillo is a Full Professor of Computer Science at the University of Venice, Italy. He is a Fellow of the IEEE and of the IAPR.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia