ISBN-13: 9783639711233 / Angielski / Miękka / 2014 / 136 str.
Glancing angle deposition (GLAD) is a physical vapor deposition method in which by exploiting the atomic shadowing at very high vapor incidence angle, a direct and spontaneous growth of columnar thin films (CTF) of a wide range of materials can be attained. The easiness, low cost, and versatility are the main features which make GLAD a promising nanoscale fabrication technique. A controlled shape and in-plane distribution of nanocolumns make the CTFs to play a vital role in number of applications. Particularly, due to enhanced plasmonic activity and interesting optical properties silver CTFs have found applications in various fields such as, SERS substrates for biosensing, dichroic filters, and plasmonic metamaterials. The central objective of this book is to study the effect of deposition parameters on the growth of silver CTFs and understand the growth mechanism during GLAD. The role of vapor incidence angle, deposition rate, and reduced substrate temperature were investigated and has been discussed in detail. The Effect of morphology of silver CTFs on surface wetting and the physical properties like evaporation and freezing of a sessile water droplet have been investigated.
Glancing angle deposition (GLAD) is a physical vapor deposition method in which by exploiting the atomic shadowing at very high vapor incidence angle, a direct and spontaneous growth of columnar thin films (CTF) of a wide range of materials can be attained. The easiness, low cost, and versatility are the main features which make GLAD a promising nanoscale fabrication technique. A controlled shape and in-plane distribution of nanocolumns make the CTFs to play a vital role in number of applications. Particularly, due to enhanced plasmonic activity and interesting optical properties silver CTFs have found applications in various fields such as, SERS substrates for biosensing, dichroic filters, and plasmonic metamaterials. The central objective of this book is to study the effect of deposition parameters on the growth of silver CTFs and understand the growth mechanism during GLAD. The role of vapor incidence angle, deposition rate, and reduced substrate temperature were investigated and has been discussed in detail. The Effect of morphology of silver CTFs on surface wetting and the physical properties like evaporation and freezing of a sessile water droplet have been investigated.