Section I. Basic Properties and Types of Semiconducting Polymer Materials 1. Introduction to semiconducting polymers 2. Introduction to peptide-based polymers 3. Biopolymers from carbohydrates, peptides, & nucleic acids 4. Polyaniline (PANI) and its relevant properties for biosensors 5. Theoretical design of polymeric semiconductor 6. Tight-binding description of semiconducting conjugated polymers
Section II. Synthesis Methods, Characterization and Processing of Semiconducting Polymer Materials 7. Background to (Electro)deposition of Polymer Films 8. Synthesis of ion-conductive polymers 9. Aqueous deposition of a semiconducting polymer 10. Synthesis and electropolymerization of new sulfur-containing monomers 11. Synthesis of Semiconducting Polymer for Organic Electronics 12. Polymerization of Dye Molecules 13. Electropolymerization of phenol and aniline derivatives 14. Production of nanocarriers made of biopolymers 15. Molecularly imprinted electropolymerized carbon electrodes 16. Immobilization strategies for the development of biosensors
Section III. Biosensing Applications of Semiconducting Polymer Materials 17. Semiconductor Polymers for Biomedical Applications 18. Electrochemical biosensors for determination of tumor biomarkers 19. Semiconductor Polymers for cardiovascular biosensor devices 20. Impedimetric Biosensors for Disease Detection and Monitoring 21. Polymethylene blue nanofilm for creatinine sensor
Section IV. Novel Applications and Future Directions for Semiconducting Polymer Materials 22. Block Copolymers for Skin-Compatible Electronics 23. Biopolymer Based Sensors for Food and Environmental Application 24. Semiconducting polymers for a new generation of electrochemical sensors 25. PEDOT:PSS paper-based electrode for biosensing applications 26. An Overview on Clinical Applications of Biosensors