• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation

ISBN-13: 9781852330668 / Angielski / Miękka / 1999 / 271 str.

Mark Girolami
Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation Girolami, Mark 9781852330668 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation

ISBN-13: 9781852330668 / Angielski / Miękka / 1999 / 271 str.

Mark Girolami
cena 403,47 zł
(netto: 384,26 VAT:  5%)

Najniższa cena z 30 dni: 385,52 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The conception of fresh ideas and the development of new techniques for Blind Source Separation and Independent Component Analysis have been rapid in recent years. It is also encouraging, from the perspective of the many scientists involved in this fascinating area of research, to witness the growing list of successful applications of these methods to a diverse range of practical everyday problems. This growth has been due, in part, to the number of promising young and enthusiastic researchers who have committed their efforts to expanding the current body of knowledge within this field of research. The author of this book is among one of their number. I trust that the present book by Dr. Mark Girolami will provide a rapid and effective means of communicating some of these new ideas to a wide international audience and that in turn this will expand further the growth of knowledge. In my opinion this book makes an important contribution to the theory of Independent Component Analysis and Blind Source Separation. This opens a range of exciting methods, techniques and algorithms for applied researchers and practitioner engineers, especially from the perspective of artificial neural networks and information theory. It has been interesting to see how rapidly the scientific literature in this area has grown.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Computer Science
Computers > Artificial Intelligence - Computer Vision & Pattern Recognition
Computers > Machine Theory
Wydawca:
Springer
Seria wydawnicza:
Perspectives in Neural Computing
Język:
Angielski
ISBN-13:
9781852330668
Rok wydania:
1999
Wydanie:
Edition.
Numer serii:
000018044
Ilość stron:
271
Waga:
0.44 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

1. Introduction.- 1.1 Self-Organisation and Blind Signal Processing.- 1.2 Outline of Book Chapters.- 2. Background to Blind Source Separation.- 2.1 Problem Formulation.- 2.2 Entropy and Information.- 2.2.1 Entropy.- 2.2.2 Kullback-Leibler Entropy and Mutual Information.- 2.2.3 Invertible Probability Density Transformations.- 2.3 A Contrast Function for ICA.- 2.4 Cumulant Expansions of Probability Densities and Higher Order Statistics.- 2.4.1 Moment Generating and Cumulant Generating Functions.- 2.4.2 Properties of Moments and Cumulants.- 2.5 Gradient Based Function Optimisation.- 2.5.1 The Natural Gradient and Covariant Algorithms.- 3. Fourth Order Cumulant Based Blind Source Separation.- 3.1 Early Algorithms and Techniques.- 3.2 The Method of Contrast Minimisation.- 3.3 Adaptive Source Separation Methods.- 3.4 Conclusions.- 4. Self-Organising Neural Networks.- 4.1 Linear Self-Organising Neural Networks.- 4.1.1 Linear Hebbian Learning.- 4.1.2 Principal Component Analysis.- 4.1.3 Linear Anti-Hebbian Learning.- 4.2 Non-Linear Self-Organising Neural Networks.- 4.2.1. Non-Linear Anti-Hebbian Learning: The Herrault-Jutten Network.- 4.2.2 Information Theoretic Algorithms.- 4.2.3 Non-Linear Hebbian Learning Algorithms.- 4.2.3.1 Signal Representation Error Minimisation.- 4.2.3.2 Non-Linear Criterion Maximisation.- 4.3 Conclusions.- 5. The Non-Linear PCA Algorithm and Blind Source Separation.- 5.1 Introduction.- 5.2 Non-Linear PCA Algorithm and Source Separation.- 5.3 Non-Linear PCA Algorithm Cost Function.- 5.4 Non-Linear PCA Algorithm Activation Function.- 5.4.1 Asymptotic Stability Requirements.- 5.4.2 Stability Properties of the Compound Activation Function.- 5.4.3 Stability of Solution with Sub-Gaussian Sources.- 5.4.4 Simulation: Separation of Mixtures of Sub-Gaussian Sources.- 5.4.5 Stability of Solution with Super-Gaussian Sources.- 5.4.6 Simulation: Separation of Mixtures of Super-Gaussian Sources.- 5.4.7 Separation of Mixtures of Both Sub-and Super-Gaussian Sources.- 5.5 Conclusions.- 6. Non-Linear Feature Extraction and Blind Source Separation.- 6.1 Introduction.- 6.2 Structure Identification in Multivariate Data.- 6.3 Neural Network Implementation of Exploratory Projection Pursuit.- 6.4 Neural Exploratory Projection Pursuit and Blind Source Separation.- 6.5 Kurtosis Extrema.- 6.6 Finding Interesting and Independent Directions.- 6.7 Finding Multiple Interesting and Independent Directions Using Symmetric Feedback and Adaptive Whitening.- 6.7.1 Adaptive Spatial Whitening.- 6.7.2 Simulations.- 6.7.3 An Extended EPP Network with Non-Linear Output Connections.- 6.8 Finding Multiple Interesting and Independent Directions Using Hierarchic Feedback and Adaptive Whitening.- 6.9 Simulations.- 6.10 Adaptive BSS Using a Deflationary EPP Network.- 6.11 Conclusions.- 7. Information Theoretic Non-Linear Feature Extraction And Blind Source Separation.- 7.1 Introduction.- 7.2 Information Theoretic Indices for EPP.- 7.3 Maximum Negentropy Learning.- 7.3.1 Single Neuron Maximum Negentropy Learning.- 7.3.2 Multiple Output Neuron Maximum Negentropy Learning.- 7.3.3 Maximum Negentropy Learning and Infomax Equivalence.- 7.3.4 The Natural Gradient and Covariant Learning.- 7.4 General Maximum Negentropy Learning.- 7.5 Stability Analysis of Generalised Algorithm.- 7.6 Simulation Results.- 7.7 Conclusions.- 8. Temporal Anti-Hebbian Learning.- 8.1 Introduction.- 8.2 Blind Source Separation of Convolutive Mixtures.- 8.3 Temporal Linear Anti-Hebbian Model.- 8.4 Comparative Simulation.- 8.5 Review of Existing Work on Adaptive Separation of Convolutive Mixtures.- 8.6 Maximum Likelihood Estimation and Source Separation.- 8.7 Temporal Anti-Hebbian Learning Based on Maximum Likelihood Estimation.- 8.8 Comparative Simulations Using Varying PDF Models.- 8.9 Conclusions.- 9. Applications.- 9.1 Introduction.- 9.2 Industrial Applications.- 9.2.1 Rotating Machine Vibration Analysis.- 9.2.2 A Multi-Tag Frequency Identification System.- 9.3 Biomedical Applications.- 9.3.1 Detection of Sleep Spindles in EEG.- 9.4 ICA: A Data Mining Tool.- 9.5 Experimental Results.- 9.5.1 The Oil Pipeline Data.- 9.5.2 The Swiss Banknote Data.- 9.6 Conclusions.- References.

Girolami, Mark Mark Girolami is Professor of Computing and Infere... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia