• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Ruled Varieties: An Introduction to Algebraic Differential Geometry » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Ruled Varieties: An Introduction to Algebraic Differential Geometry

ISBN-13: 9783528031381 / Angielski / Miękka / 2001 / 142 str.

Fischer, Gerd
Ruled Varieties: An Introduction to Algebraic Differential Geometry Fischer, Gerd 9783528031381 Friedrich Vieweg & Sohn Verlagsgesellschaft m - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Ruled Varieties: An Introduction to Algebraic Differential Geometry

ISBN-13: 9783528031381 / Angielski / Miękka / 2001 / 142 str.

Fischer, Gerd
cena 152,58
(netto: 145,31 VAT:  5%)

Najniższa cena z 30 dni: 146,48
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable.
This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties.
Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometria - Algebraiczna
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Friedrich Vieweg & Sohn Verlagsgesellschaft m
Język:
Angielski
ISBN-13:
9783528031381
Rok wydania:
2001
Wydanie:
Softcover Repri
Numer serii:
000091615
Ilość stron:
142
Waga:
0.26 kg
Wymiary:
24.41 x 16.99 x 0.84
Oprawa:
Miękka
Wolumenów:
01

0 Review from Classical Differential and Projective Geometry.- 0.1 Developable Rulings.- 0.2 Vanishing Gauß Curvature.- 0.3 Hessian Matrices.- 0.4 Classification of Developable Surfaces in ?3.- 0.5 Developable Surfaces in ?3(?).- 1 Grassmannians.- 1.1 Preliminaries.- 1.1.1 Algebraic Varieties.- 1.1.2 Rational Maps.- 1.1.3 Holomorphic Linear Combinations.- 1.1.4 Limit Direction of a Holomorphic Path.- 1.1.5 Radial Paths.- 1.2 Plücker Coordinates.- 1.2.1 Local Coordinates.- 1.2.2 The Plücker Embedding.- 1.2.3 Lines in ?3.- 1.2.4 The Plücker Image.- 1.2.5 Plücker Relations.- 1.2.6 Systems of Vector Valued Functions.- 1.3 Incidences and Duality.- 1.3.1 Equations and Generators in Terms of Plücker Coordinates.- 1.3.2 Flag Varieties.- 1.3.3 Duality of Grassmannians.- 1.3.4 Dual Projective Spaces.- 1.4 Tangents to Grassmannians.- 1.4.1 Tangents to Projective Space.- 1.4.2 The Tangent Space of the Grassmannian.- 1.5 Curves in Grassmannians.- 1.5.1 The Drill.- 1.5.2 Derived Curves.- 1.5.3 Sums and Intersections.- 1.5.4 Associated Curves and Curves with Prescribed Drill.- 1.5.5 Normal Form.- 2 Ruled Varieties.- 2.1 Incidence Varieties and Duality.- 2.1.1 Unions of Linear Varieties.- 2.1.2 Fano Varieties.- 2.1.3 Joins.- 2.1.4 Conormal Bundle and Dual Variety.- 2.1.5 Duality Theorem.- 2.1.6 The Contact Locus.- 2.1.7 The Dual Curve.- 2.1.8 Rational Curves.- 2.2 Developable Varieties.- 2.2.1 Rulings.- 2.2.2 Adapted Parameterizations.- 2.2.3 Germs of Rulings.- 2.2.4 Developable Rulings and Focal Points.- 2.2.5 Developability of Joins.- 2.2.6 Dual Varieties of Cones and Degenerate Varieties.- 2.2.7 Tangent and Osculating Scrolls.- 2.2.8 Classification of Developable One Parameter Rulings.- 2.2.9 Example of a “Twisted Plane”.- 2.2.10 Characterization of Drill One Curves.- 2.3 The Gauß Map.- 2.3.1 Definition of the Gauß Map.- 2.3.2 Linearity of the Fibers.- 2.3.3 Gauß Map and Developability.- 2.3.4 Gauß Image and Dual Variety.- 2.3.5 Existence of Varieties with Given Gauß Rank.- 2.4 The Second Fundamental Form.- 2.4.1 Definition of the Second Fundamental Form.- 2.4.2 The Degeneracy Space.- 2.4.3 The Degeneracy Map.- 2.4.4 The Singular and Base Locus.- 2.4.5 The Codimension of a Uniruled Variety.- 2.4.6 Fibers of the Gauß Map.- 2.4.7 Characterization of Gauß Images.- 2.4.8 Singularities of the Gauß Map.- 2.5 Gauß Defect and Dual Defect.- 2.5.1 Dual Defect of Segre Varieties.- 2.5.2 Gauß Defect and Singular Locus.- 2.5.3 Dual Defect and Singular Locus.- 2.5.4 Computation of the Dual Defect.- 2.5.5 The Surface Case.- 2.5.6 Classification of Developable Hypersurfaces.- 2.5.7 Dual Defect of Uniruled Varieties.- 2.5.8 Varieties with Very Small Dual Varieties.- 3 Tangent and Secant Varieties.- 3.1 Zak’s Theorems.- 3.1.1 Tangent Spaces, Tangent Cones, and Tangent Stars.- 3.1.2 Zak’s Theorem on Tangent and Secant Varieties.- 3.1.3 Theorem on Tangencies.- 3.2 Third and Higher Fundamental Forms.- 3.2.1 Definition.- 3.2.2 Vanishing of Fundamental Forms.- 3.3 Tangent Varieties.- 3.3.1 The Dimension of the Tangent Variety.- 3.3.2 Developability of the Tangent Variety.- 3.3.3 Singularities of the Tangent Variety.- 3.4 The Dimension of the Secant Variety.- List of Symbols.

Prof. Dr. em. Gerd Fischer war viele Jahre Professor für Mathematik an der Universität Düsseldorf. Er ist jetzt Gastprofessor an der Fakultät für Mathematik der TU München. Gerd Fischer ist Autor zahlreicher erfolgreicher Lehrbücher, u.a. der Linearen Algebra (vieweg studium - Grundkurs Mathematik).
Dr. Jens Piontkowski ist Hochschuldozent am Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia