SECTION 1 Introduction 1. Rigor and reproducibility in genetic research and the effects on scientific reporting and public discourse 2. Unveiling the hidden curriculum: Developing rigor and reproducibility values through teaching and mentorship SECTION 2 Genotyping 3. Genome-wide association studies (GWAS): hat are they, when to use them? 4. GWAS in the learning environment 5. Polygenic risk scores and comparative genomics: Best practices and statistical considerations 6. DNA sequencing and genotyping in the classroom 7. Classroom to career: Implementation considerations for engaging students with meaningful DNA sequencing learning opportunities SECTION 3 Next-generation sequencing & gene expression 8. Review of gene expression using microarray and RNA-seq 9. Guidelines and important considerations for 'omics-level studies 10. Best practices for statistical analysis of omics data 11. Validation of gene expression by quantitative PCR SECTION 4 Epigenetic analyses 12. Best practices for epigenome-wide DNA modification data collection and analysis 13. Best practices for the ATAC-seq assay and its data analysis 14. Best practice for ChIP-seq and its data analysis 15. A practical guide for essential analyses of Hi-C data 16. Epigenetics in the classroom SECTION 5 Gene editing technologies 17. Genome editing technologies 18. Genetic modification of mice using CRISPR-Cas9: Best practices and practical concepts explained 19. CRISPR classroom activities and case studies