ISBN-13: 9781441906663 / Angielski / Twarda / 2011 / 236 str.
ISBN-13: 9781441906663 / Angielski / Twarda / 2011 / 236 str.
This is a collection of essays based on lectures that author has given on various occasions on foundation of quantum theory, symmetries and representation theory, and the quantum theory of the superworld created by physicists. The lectures are linked by a unifying theme: how the quantum world and superworld appear under the lens of symmetry and supersymmetry. In the world of ultra-small times and distances such as the Planck length and Planck time, physicists believe no measurements are possible and so the structure of spacetime itself is an unkown that has to be first understood. There have been suggestions (Volovich hypothesis) that world geometry at such energy regimes is non-archimedian and some of the lectures explore the consequences of such a hypothesis. Ultimately, symmetries and supersymmetries are described by the representation of groups and supergroups. The author's interest in representation is a lifelong one and evolved slowly, and owes a great deal to conversations and discussions he had with George Mackey and Harish-Chandra. The book concludes with a retrospective look at these conversations.
Unitary representation theory has great intrinsic beauty which enters other parts of mathematics at a very deep level. In quantum physics it is the preferred language for describing symmetries and supersymmetries. Two of the greatest figures in its history are Mackey and Harish-Chandra. Their work (to use the words of Weyl) affords shade to large parts of present day mathematics and high energy physics. It is to their memory that this volume is lovingly dedicated.§Mackey and Harish-Chandra. Their work (to use the words of Weyl) affords shade to large parts of present day mathematics and high energy physics. It is to their memory that this volume is lovingly dedicated.The essays in this volume are like a stroll through a garden of ideas of this rich subject: quantum algebras, super geometry, unitary supersymmetries, differential equations, non-archimedean physics, are a few of the topics encountered along the way. The author, whose mathematical education evolved out of his interactions with Mackey and Harish-Chandra, concludes this volume with brief portraits of their work, embedded in the context of personal reminiscences.