Generators of the recursively enumerable degrees.- Kleene degrees of ultrafilters.- Recursion theory on strongly ?2 inadmissible ordinals.- Applications of the low-basis theorem in arithmetic.- Strong reducibilities in ?- and ?-recursion theory.- Embeddings and extensions of embeddings in the r.e. tt and wtt-degrees.- An immune partition of the ordinals.- An application of ? 2 1 -logic to descriptive set theory.- Probabilistic machines, oracles, and quantifiers.- Minimal polynomial degrees of nonrecursive sets.- Genericity for recursively enumerable sets.- Sets of everywhere singular functions.- Measure, ? 1 0 -classes and complete extensions of PA.- On the ordering of classes in high/low hierarchies.- Generic objects in recursion theory.- The structure of m-degrees.- Some open questions in recursion theory.- Absolute type 2 objects.- Recursion theoretic aspects of the dual ramsey theorem.- Reflection and the priority method in E-recursion theory.- Subrecursive ordinals.
Prof. Dr. H.-D. Ebbinghaus ist Leiter des Instituts für Mathematische Logik an der Universität Freiburg. Durch Veröffentlichungen hat der Autor einen hohen Bekanntheitsgrad in der Hochschulmathematik.