• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability

ISBN-13: 9780471495178 / Angielski / Twarda / 2001 / 304 str.

Danilo P. Mandic; Jonathon Chambers; Jonathon Chambers
Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability Mandic, Danilo P. 9780471495178 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability

ISBN-13: 9780471495178 / Angielski / Twarda / 2001 / 304 str.

Danilo P. Mandic; Jonathon Chambers; Jonathon Chambers
cena 896,45 zł
(netto: 853,76 VAT:  5%)

Najniższa cena z 30 dni: 889,10 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.

  • Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting
  • Examines stability and relaxation within RNNsPresents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation
  • Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration
  • Describes strategies for the exploitation of inherent relationships between parameters in RNNs
  • Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing
Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications. VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE
http: //www.wiley.co.uk/commstech/ VISIT OUR WEB PAGE
http: //www.wiley.co.uk/

Kategorie:
Informatyka, Programowanie
Kategorie BISAC:
Computers > Data Science - Neural Networks
Computers > Networking - General
Wydawca:
John Wiley & Sons
Seria wydawnicza:
Wiley Series in Adaptive and Learning Systems for Signal Pro
Język:
Angielski
ISBN-13:
9780471495178
Rok wydania:
2001
Numer serii:
000232575
Ilość stron:
304
Waga:
0.56 kg
Wymiary:
24.82 x 15.39 x 2.21
Oprawa:
Twarda
Wolumenów:
01

Preface.

Introduction.

Fundamentals.

Network Architectures for Prediction.

Activation Functions Used in Neural Networks.

Recurrent Neural Networks Architectures.

Neural Networks as Nonlinear Adaptive Filters.

Stability Issues in RNN Architectures.

Data–Reusing Adaptive Learning Algorithms.

A Class of Normalised Algorithms for Online Training of Recurrent Neural Networks.

Convergence of Online Learning Algorithms in Neural Networks.

Some Practical Considerations of Predictability and Learning Algorithms for Various Signals.

Exploiting Inherent Relationships Between Parameters in Recurrent Neural Networks.

Appendix A: The O Notation and Vector and Matrix Differentiation.

Appendix B: Concepts from the Approximation Theory.

Appendix C: Complex Sigmoid Activation Functions, Holomorphic Mappings and Modular Groups.

Appendix D: Learning Algorithms for RNNs.

Appendix E: Terminology Used in the Field of Neural Networks.

Appendix F: On the A Posteriori Approach in Science and Engineering.

Appendix G: Contraction Mapping Theorems.

Appendix H: Linear GAS Relaxation.

Appendix I: The Main Notions in Stability Theory.

Appendix J: Deasonsonalising Time Series.

References.

Index.

New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real–time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.

  • Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio–temporal architectures together with the concepts of modularity and nesting
  • Examines stability and relaxation within RNNs
  • Presents on–line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data–reusing adaptation, and normalisation
  • Studies convergence and stability of on–line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration
  • Describes strategies for the exploitation of inherent relationships between parameters in RNNs
  • Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing

Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.

Chambers, Jonathon Dr. Sanei received his PhD from Imperial College o... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia