• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko

ISBN-13: 9789811967870 / Angielski / Miękka / 2023 / 647 str.

Yinqin Li; Dachun Yang; Long Huang
Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko Yinqin Li Dachun Yang Long Huang 9789811967870 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko

ISBN-13: 9789811967870 / Angielski / Miękka / 2023 / 647 str.

Yinqin Li; Dachun Yang; Long Huang
cena 322,77 zł
(netto: 307,40 VAT:  5%)

Najniższa cena z 30 dni: 308,41 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis.This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces.In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated.With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.

The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis.

This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces.

In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated.

With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Mathematical Analysis
Mathematics > Functional Analysis
Wydawca:
Springer
Seria wydawnicza:
Lecture Notes in Mathematics
Język:
Angielski
ISBN-13:
9789811967870
Rok wydania:
2023
Wydanie:
2022
Numer serii:
000013117
Ilość stron:
647
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Preface i

1 Generalized Herz Spaces of Rafeiro and Samko

1.1 Matuszewska–Orlicz Indices 

1.2 Generalized Herz Spaces

1.3 Convexities 

1.4 Absolutely Continuous Quasi-Norms

1.5 Boundedness of Sublinear Operators 

1.6 Fefferman–Stein Vector-Valued Inequalities 

1.7 Dual and Associate Spaces of Local Generalized Herz Spaces 

1.8 Extrapolation Theorems 

2 Block Spaces and Their Applications

2.1 Block Spaces

2.2 Duality

2.3 Boundedness of Sublinear Operators 

3 Boundedness and Compactness Characterizations of Commutators on Generalized Herz Spaces

3.1 Boundedness Characterizations

3.2 Compactness Characterizations

4 Generalized Herz–Hardy Spaces

4.1 Maximal Function Characterizations

4.2 Relations with Generalized Herz Spaces 

4.3 Atomic Characterizations 

4.4 Generalized Finite Atomic

Herz–Hardy Spaces 

4.5 Molecular Characterizations 

4.6 Littlewood–Paley Function Characterizations 

4.7 Dual Space of HK˙ p,qω,0(Rn)

4.8 Boundedness of CalderÅLon–Zygmund Operators

4.9 Fourier Transform 

5 Localized Generalized Herz–Hardy Spaces 

5.1 Maximal Function Characterizations 

5.2 Relations with Generalized Herz–Hardy Spaces 

5.3 Atomic Characterizations 

5.4 Molecular Characterizations 

5.5 Littlewood–Paley Function Characterizations 

5.6 Boundedness of Pseudo-Differential Operators

6 Weak Generalized Herz–Hardy Spaces

6.1 Maximal Function Characterizations

6.2 Relations with Weak Generalized Herz Spaces 

6.3 Atomic Characterizations 

6.4 Molecular Characterizations 

6.5 Littlewood–Paley Function Characterizations 

6.6 Boundedness of CalderÅLon–Zygmund Operators 

6.7 Real Interpolations 

7 Inhomogeneous Generalized Herz Spaces and Inhomogeneous Block Spaces 

7.1 Inhomogeneous Generalized Herz Spaces 

7.1.1 Convexities 

7.1.2 Absolutely Continuous Quasi-Norms 

7.1.3 Boundedness of Sublinear Operators and Fefferman–Stein Vector-Valued Inequalities

7.1.4 Dual and Associate Spaces of Inhomogeneous Local Generalized Herz Spaces 

7.1.5 Extrapolation Theorems 

7.2 Inhomogeneous Block Spaces and Their Applications 

7.2.1 Inhomogeneous Block Spaces 

7.2.2 Duality Between Inhomogeneous Block Spaces and Global Generalized Herz Spaces 

7.2.3 Boundedness of Sublinear Operators 

7.3 Boundedness and Compactness Characterizations of Commutators 

7.3.1 Boundedness Characterizations

7.3.2 Compactness Characterizations 

8 Hardy Spaces Associated with Inhomogeneous Generalized Herz Spaces

8.1 Inhomogeneous Generalized Herz–Hardy Spaces 

8.1.1 Maximal Function Characterizations 

8.1.2 Relations with Inhomogeneous Generalized Herz Spaces 

8.1.3 Atomic Characterizations 

8.1.4 Inhomogeneous Generalized Finite Atomic Herz–Hardy Spaces 

8.1.5 Molecular Characterizations 

8.1.6 Littlewood–Paley Function Characterizations 

8.1.7 Dual Space of HKp,qω,0(Rn) 

8.1.8 Boundedness of CalderÅLon–Zygmund Operators 

8.1.9 Fourier Transform 

8.2 Inhomogeneous Localized Generalized Herz–Hardy Spaces

8.2.1 Maximal Function Characterizations 

8.2.2 Relations with Inhomogeneous Generalized Herz–Hardy Spaces 

8.2.3 Atomic Characterizations 

8.2.4 Molecular Characterizations 

8.2.5 Littlewood–Paley Function Characterizations 

8.2.6 Boundedness of Pseudo-Differential Operators 

8.3 Inhomogeneous Weak Generalized Herz–Hardy Spaces 

8.3.1 Maximal Function Characterizations 

8.3.2 Relations with Inhomogeneous Weak Generalized Herz Spaces

8.3.3 Atomic Characterizations

8.3.4 Molecular Characterizations

8.3.5 Littlewood–Paley Function Characterizations

8.3.6 Boundedness of CalderÅLon–Zygmund Operators

8.3.7 Real Interpolations

Bibliography

Index

Abstract

Yinqin Li is a Ph.D. student of mathematics at Beijing Normal University, China and his advisor is Professor Dachun Yang. He received his B.S. from Beijing Normal University in 2022. His research interests now include the real-variable theory of function spaces and its applications in the boundedness of operators.

Dachun Yang is a professor of mathematics at Beijing Normal University, China. He received his Ph.D. from Beijing Normal University in 1992 under the supervision of Shanzhen Lu. Since his Ph.D., real-variable theory about Herz–Hardy spaces has been one of Dachun Yang's research interests. His research interests now include real-variable theory of function spaces (associated with operators) on various underlying spaces including Euclidean spaces, metric measure spaces, and nonhomogeneous metric spaces, as well as their applications to the boundedness of (Riesz or singular integral) operators and multipliers. Dachun Yang and his co-authors have published 4 monographs and more than 400 journal articles.

Long Huang is a postdoctoral researcher of mathematics at Guangzhou University, China. He received his Ph. D. from Beijing Normal University in 2021 under the supervision of Dachun Yang. His research interests now include the real-variable theory of function spaces and its applications in the boundedness of operators.

The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis.

This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces.

In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated.

With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia