ISBN-13: 9789810206598 / Angielski / Twarda / 1992 / 348 str.
ISBN-13: 9789810206598 / Angielski / Twarda / 1992 / 348 str.
This is perhaps the most up-to-date book on Modern Elementary Particle Physics. The main content is an introduction to Yang-Mills fields, and the Standard Model of Particle Physics. A concise introduction to quarks is provided, with a discussion of the representations of SU(3).The Standard Model is presented in detail, including such topics as the Kobayashi-Maskawa matrix, chiral symmetry breaking, and the θ-vacuum. Theoretical topics of a more general nature include path integrals, topological solitons, renormalization group, effective potentials, the axial anomaly, and lattice gauge theory.This second edition, which has been expanded, incorporates the following new subjects: Wilson's renormalization scheme, and its relation to perturbative renormalization; pitfalls in quantizing gauge fields, such as the Gribov ambiguity; the lattice as a consistent regularization; Monte Carlo methods of solution; and the issues, folklores, and scenarios of quark confinement. More than a quarter of the book comprise of new materials.This book may be used as a text for a one-semester course on advanced quantum field theory, or reference book for particle physicists.
This is perhaps the most up-to-date book on Modern Elementary Particle Physics. The main content is an introduction to Yang-Mills fields, and the Standard Model of Particle Physics. A concise introduction to quarks is provided, with a discussion of the representations of SU(3).The Standard Model is presented in detail, including such topics as the Kobayashi-Maskawa matrix, chiral symmetry breaking, and the θ-vacuum. Theoretical topics of a more general nature include path integrals, topological solitons, renormalization group, effective potentials, the axial anomaly, and lattice gauge theory.This second edition, which has been expanded, incorporates the following new subjects: Wilson's renormalization scheme, and its relation to perturbative renormalization; pitfalls in quantizing gauge fields, such as the Gribov ambiguity; the lattice as a consistent regularization; Monte Carlo methods of solution; and the issues, folklores, and scenarios of quark confinement. More than a quarter of the book comprise of new materials.This book may be used as a text for a one-semester course on advanced quantum field theory, or reference book for particle physicists.