'… a timely and well-informed update to the subject and provides graduate and advanced students with enough material to understand and tackle these very interesting systems.' Contemporary Physics
Part I. Introduction: 1. Basic concepts; 2. Overview; Part II. A First Course: 3. Classical phase transitions; 4. The renormalization group; 5. The quantum Ising model; 6. The quantum rotor model; 7. Correlations, susceptibilities, and the quantum critical point; 8. Broken symmetries; 9. Boson Hubbard model; Part III. Non-zero Temperatures: 10. The Ising chain in a transverse field; 11. Quantum rotor models: large-N limit; 12. The d = 1, O(N ≥ 3) rotor models; 13. The d = 2, O(N ≥ 3) rotor models; 14. Physics close to and above the upper-critical dimension; 15. Transport in d = 2; Part IV. Other Models: 16. Dilute Fermi and Bose gases; 17. Phase transitions of Dirac fermions; 18. Fermi liquids, and their phase transitions; 19. Heisenberg spins: ferromagnets and antiferromagnets; 20. Spin chains: bosonization; 21. Magnetic ordering transitions of disordered systems; 22. Quantum spin glasses; References; Index.