• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Quantum Machine Learning with Python: Using Cirq from Google Research and IBM Qiskit » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2948695]
• Literatura piękna
 [1824038]

  więcej...
• Turystyka
 [70868]
• Informatyka
 [151073]
• Komiksy
 [35227]
• Encyklopedie
 [23181]
• Dziecięca
 [621575]
• Hobby
 [138961]
• AudioBooki
 [1642]
• Literatura faktu
 [228651]
• Muzyka CD
 [371]
• Słowniki
 [2933]
• Inne
 [445341]
• Kalendarze
 [1243]
• Podręczniki
 [164416]
• Poradniki
 [479493]
• Religia
 [510449]
• Czasopisma
 [502]
• Sport
 [61384]
• Sztuka
 [243086]
• CD, DVD, Video
 [3417]
• Technologie
 [219673]
• Zdrowie
 [100865]
• Książkowe Klimaty
 [124]
• Zabawki
 [2168]
• Puzzle, gry
 [3372]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7838]
Kategorie szczegółowe BISAC

Quantum Machine Learning with Python: Using Cirq from Google Research and IBM Qiskit

ISBN-13: 9781484265215 / Angielski / Miękka / 2021 / 361 str.

Santanu Pattanayak
Quantum Machine Learning with Python: Using Cirq from Google Research and IBM Qiskit Santanu Pattanayak 9781484265215 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Quantum Machine Learning with Python: Using Cirq from Google Research and IBM Qiskit

ISBN-13: 9781484265215 / Angielski / Miękka / 2021 / 361 str.

Santanu Pattanayak
cena 210,17
(netto: 200,16 VAT:  5%)

Najniższa cena z 30 dni: 208,44
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!
Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Programming - Open Source
Computers > Artificial Intelligence - General
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484265215
Rok wydania:
2021
Ilość stron:
361
Waga:
0.66 kg
Wymiary:
25.4 x 17.78 x 2.01
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

"The rigor, the mathematical detail, and the inclusion of proofs are very important contributions ... . the book is well written and easy to read. Concepts, ideas, and algorithms are very well illustrated with simple examples but then also explained in exquisite mathematical detail, followed by concise yet nicely explained codification in Cirq or Qiskit." (Santiago Escobar, Computing Reviews, October 28, 2021)

Quantum Machine Learning With Python
 

Chapter 1: Introduction to Quantum Mechanics and Quantum Computing

Chapter Goal: Introduce the concept of Quantum mechanics and Quantum computing to the readers

No of pages   50-60

Sub-Topics

1.      Introduction to Quantum computing 

2.      Quantum bit and its realization

3.      Quantum superposition and Quantum entanglement 

4.      Bloch Sphere representation of Qubit

5.      Stern Gerlach Experiment

6.      Bell State

7.      Dirac Notations

8.      Single Qubit Gates

9.      Multiple Qubit Gates

10.  Quantum No Cloning Theorem

11.  Measurement in different basis

12.  Quantum Teleportation

13.  Quantum parallelism  with Deuth Jozsa

14.  Reversibility of quantum computing 

 

 

 

Chapter 2:  Mathematical Foundations and Postulates of Quantum Computing

Chapter Goal: Lays the mathematical foundation along with the postulates of Quantum computing

No of pages 50-60

Sub -Topics 

1.      Topics from Linear algebra 

2.      Pauli Operators

3.      Linear Operators and their properties

4.      Hermitian Operators

5.      Normal Operators

6.      Unitary Operators

7.      Spectral Decomposition

8.      Linear Operators on Tensor Product of Vectors

9.      Exponential Operator

10.  Commutator Anti commutator Operator

11.   Postulates of Quantum Mechanics

12.  Measurement Operators

13.  Heisenberg Uncertainty Principle

14.   Density Operators and Mixed States

15.  Solovay-Kitaev Theorem and Universality of Quantum gates

 

Chapter 3:  Introduction to Quantum Algorithms 

Chapter Goal:   Introduce to the readers Quantum algorithms to express the Quantum computing supremacy over classical computation

No of pages: 70-80

Sub - Topics:  

1.      Introduction to Cirq and Qiskit

2.      Bell State creation and measurement in Cirq and qiskit

3.  Quantum teleportation Implementation

4. Quantum Random Number generator

5. Deutsch Jozsa Implementation

8. Hadamard Sampling

6. Bernstein Vajirani Algorithm Implementation

7. Bell’s Inequality Implementation

8. Simon’s Algorithm of secret string search Implementation

9 Grover’s Algorithm Implementation

     10. Algorithmic complexity in Quantum and Classical computing paradigm 

 

Chapter 4:  Quantum Fourier Transform Related Algorithms

Goal:   Introduce to the readers Quantum Fourier related algorithms

No of pages: 60-70

Sub - Topics:  

1.      Fourier Series

2.      Fourier Transform

3.      Discrete Fourier Transform

4.      Quantum Fourier Transform(QFT)

5.      QFT implementation

6.      Hadamard Transform as Fourier Transform

7.      Quantum Phase Estimation(QPE)

8.      Quantum Phase Estimation  Implementation

9.      Error Analysis in Quantum Phase Estimation

10.  Shor’s Period Finding Algorithm and Factoring

11.  Period Finding Implementation

12.  Prime Factoring and Implementation

   

 

PART 2 

Chapter 5: Introduction to Quantum Machine Learning 

Goal:   Introduce to the readers Quantum machine learning paradigm

No of pages: 60-70

Sub - Topics:  

1.      Harrow, Hassidim and Lloyd Algorithm (HHL) for solving Linear Equation

2.      HHL algorithm Implementation

3.      Quantum Linear Regression and Implementation

4.      Quantum SWAP Test for dot product Computation

5.      Quantum SWAP Test Implementation

6.      Quantum Amplitude Scaling

7.      Quantum Euclidean Distance Computation

8.      Quantum Euclidean Distance Implementation

9.      Quantum K means

10.  Quantum K means Implementation

11.  Quantum Random Access Memory(QRAM)

12.  Quantum Principle Component Analysis

13.  Quantum Support Vector Machines

14.  Quantum Least Square Support Vector Machines(LS -SVM)

15.  Least Square SVM Implementation

 

 

 

Chapter 6: Quantum Deep Learning and Quantum Optimization Based Algorithms

Goal:   Introduce to the readers Quantum deep learning algorithms and Quantum Optimization Based Algorithms

No of pages: 40-50

Sub - Topics:  

1.      Quantum Neural network and Implementation

2.      Quantum Convolutional Neural Network and Implementation

3.      Variational Quantum Eigen solvers(VQE)

4.      Graph Coloring Problem using VQE

5.      Travelling Salesman problem using VQE


Chapter 7: Quantum Adiabatic Processes and Quantum based Optimization. 


 


Santanu Pattanayak works as a staff machine learning specialist at Qualcomm Corp R&D and is an author of the book “Pro Deep Learning with TensorFlow” published by Apress. He has around 12 years of work experience and has worked at GE, Capgemini, and IBM before joining Qualcomm. He graduated with a degree in electrical engineering from Jadavpur University, Kolkata and is an avid math enthusiast. Santanu has a master’s degree in data science from Indian Institute of Technology (IIT), Hyderabad. He also participates in Kaggle competitions in his spare time where he ranks in top 500. Currently, he resides in Bangalore with his wife.

Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others.

You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. 

You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research.

You will:
  • Understand Quantum computing and Quantum machine learning
  • Explore varied domains and the scenarios where Quantum machine learning solutions can be applied
  • Develop expertise in algorithm development in varied Quantum computing frameworks
  • Review the major challenges of building large scale Quantum computers and applying its various techniques



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia