• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Quantum Groups in Three-Dimensional Integrability » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Quantum Groups in Three-Dimensional Integrability

ISBN-13: 9789811932618 / Angielski / Twarda / 2022

Atsuo Kuniba
Quantum Groups in Three-Dimensional Integrability Atsuo Kuniba 9789811932618 Springer Nature Singapore - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Quantum Groups in Three-Dimensional Integrability

ISBN-13: 9789811932618 / Angielski / Twarda / 2022

Atsuo Kuniba
cena 403,47 zł
(netto: 384,26 VAT:  5%)

Najniższa cena z 30 dni: 385,52 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

Quantum groups have been studied intensively in mathematics and have found many valuable applications in theoretical and mathematical physics since their discovery in the mid-1980s. Roughly speaking, there are two prototype examples of quantum groups, denoted by Uq and Aq. The former is a deformation of the universal enveloping algebra of a Kac–Moody Lie algebra, whereas the latter is a deformation of the coordinate ring of a Lie group. Although they are dual to each other in principle, most of the applications so far are based on Uq, and the main targets are solvable lattice models in 2-dimensions or quantum field theories in 1+1 dimensions.
 
This book aims to present a unique approach to 3-dimensional integrability based on Aq. It starts from the tetrahedron equation, a 3-dimensional analogue of the Yang–Baxter equation, and its solution due to work by Kapranov–Voevodsky (1994).
 
Then, it guides readers to its variety of generalizations, relations to quantum groups, and applications. They include a connection to the Poincaré–Birkhoff–Witt basis of a unipotent part of Uq, reductions to the solutions of the Yang–Baxter equation, reflection equation, G2 reflection equation, matrix product constructions of quantum R matrices and reflection K matrices, stationary measures of multi-species simple-exclusion processes, etc.
 
These contents of the book are quite distinct from conventional approaches and will stimulate and enrich the theories of quantum groups and integrable systems.


Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Science > Fizyka matematyczna
Science > Fizyka kwantowa
Wydawca:
Springer Nature Singapore
Seria wydawnicza:
Theoretical and Mathematical Physics
Język:
Angielski
ISBN-13:
9789811932618
Rok wydania:
2022
Waga:
0.68 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Dodatkowe informacje:
Wydanie ilustrowane

Introduction.- Tetrahedron equation.- 3D R from quantized coordinate ring of type A.- 3D reflection equation and quantized reflection equation.- 3D K from quantized coordinate ring of type C.- 3D K from quantized coordinate ring of type B.- Intertwiners for quantized coordinate ring Aq (F4).- Intertwiner for quantized coordinate ring Aq (G2).- Comments on tetrahedron-type equation for non-crystallographic Coxeter groups.- Connection to PBW bases of nilpotent subalgebra of Uq.- Trace reductions of RLLL = LLLR.- Boundary vector reductions of RLLL = LLLR.- Trace reductions of RRRR = RRRR.- Boundary vector reductions of RRRR = RRRR.- Boundary vector reductions of (LGLG)K = K(GLGL).- Reductions of quantized G2 reflection equation.- Application to multispecies TASEP.

Quantum groups have been studied intensively in mathematics and have found many valuable applications in theoretical and mathematical physics since their discovery in the mid-1980s. Roughly speaking, there are two prototype examples of quantum groups, denoted by Uq and Aq. The former is a deformation of the universal enveloping algebra of a Kac–Moody Lie algebra, whereas the latter is a deformation of the coordinate ring of a Lie group. Although they are dual to each other in principle, most of the applications so far are based on Uq, and the main targets are solvable lattice models in 2-dimensions or quantum field theories in 1+1 dimensions.
 
This book aims to present a unique approach to 3-dimensional integrability based on Aq. It starts from the tetrahedron equation, a 3-dimensional analogue of the Yang–Baxter equation, and its solution due to work by Kapranov–Voevodsky (1994).
 
Then, it guides readers to its variety of generalizations, relations to quantum groups, and applications. They include a connection to the Poincaré–Birkhoff–Witt basis of a unipotent part of Uq, reductions to the solutions of the Yang–Baxter equation, reflection equation, G2 reflection equation, matrix product constructions of quantum R matrices and reflection K matrices, stationary measures of multi-species simple-exclusion processes, etc.
 
These contents of the book are quite distinct from conventional approaches and will stimulate and enrich the theories of quantum groups and integrable systems.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia