• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Quantitative Methods in Population Health: Extensions of Ordinary Regression » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Quantitative Methods in Population Health: Extensions of Ordinary Regression

ISBN-13: 9780471455059 / Angielski / Twarda / 2003 / 312 str.

Mari Palta
Quantitative Methods in Population Health: Extensions of Ordinary Regression Palta, Mari 9780471455059 Wiley-Interscience - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Quantitative Methods in Population Health: Extensions of Ordinary Regression

ISBN-13: 9780471455059 / Angielski / Twarda / 2003 / 312 str.

Mari Palta
cena 742,73 zł
(netto: 707,36 VAT:  5%)

Najniższa cena z 30 dni: 736,64 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Each topic starts with an explanation of the theoretical background necessary to allow full understanding of the technique and to facilitate future learning of more advanced or new methods and software
Explanations are designed to assume as little background in mathematics and statistical theory as possible, except that some knowledge of calculus is necessary for certain parts.
SAS commands are provided for applying the methods. (PROC REG, PROC MIXED, and PROC GENMOD)
All sections contain real life examples, mostly from epidemiologic research
First chapter includes a SAS refresher

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Medical > Biostatistics
Medical > Epidemiologia
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Wiley-Interscience
Seria wydawnicza:
Wiley Series in Probability and Statistics
Język:
Angielski
ISBN-13:
9780471455059
Rok wydania:
2003
Numer serii:
000033279
Ilość stron:
312
Waga:
0.68 kg
Wymiary:
24.0 x 16.5 x 2.5
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

"I enjoyed reading this book and I recommend [it]." ( Journal of Statistical Computation and Simulation, July 2005)

"The book is well written a timely book that appears to cover a gap in existing literature." (Journal of the American Statistical Association, June 2005)

provides an accessible guide for students in an applied statistics sequence as well as for practising researchers and professionals... (Zentralblatt Math, Vol.1038, No.13, 2004)

"It is highly recommended for academic and research libraries supporting programs of demography, public health, and other interdisciplinary programs related to population health. (E–STREAMS, August 2004)

...assembles the information...investigators need most often in the course of several long–term population–based observational studies. (Quarterly of Applied Mathematics, Vol. LXII, No. 1, March 2004)

"...this book...provides the most pages of illustrations relative to pages of text of any book that I can recall...a fantastic book for practitioners..." (Technometrics, Vol. 46, No. 1, February 2004)

Preface.

Acknowledgments.

Acronyms.

Introduction.

I.1 Newborn Lung Project.

I.2 Wisconsin Diabetes Registry.

I.3 Wisconsin Sleep Cohort Study.

Suggested Reading.

1 Review of Ordinary Linear Regression and Its Assumptions.

1.1 The Ordinary Linear Regression Equation and Its Assumptions.

1.1.1 Straight–Line Relationship.

1.1.2 Equal Variance Assumption.

1.1.3 Normality Assumption.

1.1.4 Independence Assumption.

1.2 A Note on How the Least–Squares Estimators are Obtained.

Output Packet I: Examples of Ordinary Regression Analyses.

2 The Maximum Likelihood Approach to Ordinary Regression.

2.1 Maximum Likelihood Estimation.

2.2 Example.

2.3 Properties of Maximum Likelihood Estimators.

2.4 How to Obtain a Residual Plot with PROC MIXED.

Output Packet II: Using PROC MIXED and Comparisons to PROC RE G.

3 Reformulating Ordinary Regression Analysis in Matrix Notation.

3.1 Writing the Ordinary Regression Equation in Matrix Notation.

3.1.1 Example.

3.2 Obtaining the Least–Squares Estimator in Matrix Notation.

3.2.1 Example: Matrices in Regression Analysis.

3.3 List of Matrix Operations to Know.

4 Variance Matrices and Linear Transformations.

4.1 Variance and Correlation Matrices.

4.1.1 Example.

4.2 How to Obtain the Variance of a Linear Transformation.

4.2.1 Two Variables.

4.2.2 Many Variables.

5 Variance Matrices of Estimators of Regression Coefficients.

5.1 Usual Standard Error of Least–Squares Estimator of Regression Slope in Nonmatrix Formulation.

5.2 Standard Errors of Least–Squares Regression Estimators in Matrix Notation.

5.2.1 Example.

5.3 The Large Sample Variance Matrix of Maximum Likelihood Estimators.

5.4 Tests and Confidence Intervals.

5.4.1 Example–Comparing PROC REG and PROC MIXED.

6 Dealing with Unequal Variance Around the Regression Line.

6.1 Ordinary Least Squares with Unequal Variance.

6.1.1 Examples.

6.2 Analysis Taking Unequal Variance into Account.

6.2.1 The Functional Transformation Approach.

6.2.2 The Linear Transformation Approach.

6.2.3 Standard Errors of Weighted Regression Estimators.

Output Packet III: Applying the Empirical Option to Adjust Standard Errors.

Output Packet IV: Analyses with Transformation of the Outcome Variable to Equalize Residual Variance.

Output Packet V: Weighted Regression Analyses of GHb Data on Age.

7 Application of Weighting with Probability Sampling and Nonresponse.

7.1 Sample Surveys with Unequal Probability Sampling.

7.1.1 Example.

7.2 Examining the Impact of Nonresponse.

7.2.1 Example (of Reweighting as Well as Some SAS Manipulations).

7.2.2 A Few Comments on Weighting by a Variable Versus Including it in the Regression Model.

Output Packet VI: Survey and Missing Data Weights.

8 Principles in Dealing with Correlated Data.

8.1 Analysis of Correlated Data by Ordinary Unweighted Least–Squares Estimation.

8.1.1 Example.

8.1.2 Deriving the Variance Estimator.

8.1.3 Example.

8.2 Specifying Correlation and Variance Matrices.

8.3 The Least–Squares Equation Incorporating Correlation.

8.3.1 Another Application of the Spectral Theorem.

8.4 Applying the Spectral Theorem to the Regression Analysis of Correlated Data.

8.5 Analysis of Correlated Data by Maximum Likelihood.

8.5.1 Non equal Variance.

8.5.2 Correlated Errors.

8.5.3 Example.

Output Packet VII: Analysis of Longitudinal Data in Wisconsin Sleep Cohort.

9 A Further Study of How the Transformation Works with Correlated Data.

9.1 Why Would ?W and ?B Differ?

9.2 How the Between– and Within–Individual Estimators are Combined.

9.3 How to Proceed in Practice.

9.3.1 Example.

Output Packet VIII: Investigating and Fitting Within– and Between–Individual Effects.

10 Random Effects.

10.1 Random Intercept.

10.1.1 Example.

10.1.2 Example.

10.2 Random Slopes.

10.2.1 Example.

10.3 Obtaining The Best Estimates of Individual Intercepts and Slopes.

10.3.1 Example.

Output Packet IX: Fitting Random Effects Models.

11 The Normal Distribution and Likelihood Revisited.

11.1 PROC GENMOD.

11.1.1 Example.

Output Packet X: Introducing PROC GENMOD.

12 The Generalization to Non–normal Distributions.

12.1 The Exponential Family.

12.1.1 The Binomial Distribution.

12.1.2 The Poisson Distribution.

12.1.3 Example.

12.2 Score Equations for the Exponential Family and the Canonical Link.

12.3 Other Link Functions.

12.3.1 Example.

13 Modeling Binomial and Binary Outcomes.

13.1 A Brief Review of Logistic Regression.

13.1.1 Example: Review of the Output from PROC LOGIST.

13.2 Analysis of Binomial Data in the Generalized Linear Models Framework.

13.2.1 Example of Logistic Regression with Binary Outcome.

13.2.2 Example with Binomial Outcome.

13.2.3 Some More Examples of Goodness–of–Fit Tests.

13.3 Other Links for Binary and Binomial Data.

13.3.1 Example.

Output Packet XI: Logistic Regression Analysis with PROC LOGIST and PROC GENMOD.

Output Packet XII: Analysis of Grouped Binomial Data.

Output Packet XIII: Some Goodness–of–Fit Tests for Binomial Outcome.

Output Packet XIV: Three Link Functions for Binary Outcome.

Output Packet XV: Poisson Regression.

Output Packet XVI: Dealing with Overdispersion in Rates.

14 Modeling Poisson Outcomes The Analysis of Rates.

14.1 Review of Rates.

14.1.1 Relationship Between Rate and Risk.

14.2 Regression Analysis.

14.3 Example with Cancer Mortality Rates.

14.3.1 Example with Hospitalization of Infants.

14.4 Overdispersion.

14.4.1 Fitting a Dispersion Parameter.

14.4.2 Fitting a Different Distribution.

14.4.3 Using Robust Standard Errors.

14.4.4 Applying Adjustments for Over Dispersion to the Examples.

Output Packet XV: Poisson Regression.

15 Modeling Correlated Outcomes with Generalized Estimating Equations.

15.1 A Brief Review and Reformulation of the Normal Distribution, Least Squares and Likelihood.

15.2 Further Developments for the Exponential Family.

15.3 How are the Generalized Estimating Equations Justified?

15.3.1 Analysis of Longitudinal Systolic Blood Pressure by PROC MIXED and GENMOD.

15.3.2 Analysis of Longitudinal Hypertension Data by PROC GENMOD.

15.3.3 Analysis of Hospitalizations Among VLBW Children Up to Age 5.

15.4 Another Way to Deal with Correlated Binary Data.

Output Packet XVII: Mixed Versus GENMOD for Longitudinal SBP and Hypertension Data.

Output Packet XVIII: Longitudinal Analysis of Rates.

Output Packet XIX: Conditional Logistic Regression of Hypertension Data.

References.

Appendix: Matrix Operations.

A.1 Adding Matrices.

A.2 Multiplying Matrices by a Number.

A.3 Multiplying Matrices by Each Other.

A.4 The Inverse of a Matrix.

Index.

MARI PALTA, PHD, is a professor in the Department of Population Health Sciences and Biostatistics and Medical Information at the University of Wisconsin–Madison

A user s guide to advanced statistical techniques for nonstatisticians

The study of population health often involves the use of observational data from existing data sets, complex survey designs and longitudinal follow–up. Ordinary regression analysis, familiar to most researchers and practitioners is inadequate for analyzing such data and answering important questions about the relationship of risk factors to health. Nonstatisticians such as epidemiologists and health services researchers require a working knowledge of the sophisticated modeling techniques used by professional statisticians. Quantitative Methods in Population Health provides an accessible guide for students in an applied statistics sequence as well as for practicing researchers and professionals.

Mari Palta s timely text assumes some background in mathematics and in applied statistics and regression analysis, but little knowledge of statistical theory. The Statistical Analysis System® (SAS) is an ubiquitous tool in the field, and some basic knowledge of its structure is assumed. Each topic starts with an explanation of the theoretical background that is necessary for understanding the technique as well as for establishing a basis to adopt more advanced methods or software in the future. The author endeavors to keep the material immediately applicable by providing detailed instructions for how to run and interpret procedures in SAS. Topics covered include:

  • Regression analysis with weights
  • Unequal variance
  • Correlated and longitudinal outcomes
  • Mixed effects
  • Generalized linear models
  • Generalized estimating equations

SAS commands for applying the methods including PROC REG, PROC MIXED, and PROC GENMOD are provided, and each section includes real–life examples. Quantitative Methods in Population Health proves a seamless meshing of the theoretical and practical in this vital field.

Palta, Mari MARI PALTA, PHD, is a professor in the Department ... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia