Introduction.- Comparing differences across groups.- Assessing (innocuous) relationships.- Models with latent concepts and multiple relationships: structural equation modeling.- Nested data and multilevel models: hierarchical linear models.- Analyzing longitudinal and panel data.- Causality: Endogeneity biases and possible remedies.- How to start analyzing, test assumptions, and deal with that pesky p-value.- Keeping track and staying sane.
Willem Mertens is a Postdoctoral Research Fellow at Queensland University of Technology, Brisbane, Australia, and a Research Fellow of Vlerick Business School, Belgium. His main research interests lie in the areas of innovation, positive deviance and organizational behavior in general.
Amedeo Pugliese (PhD, University of Naples, Federico II) is currently Associate Professor of Financial Accounting and Governance at the University of Padova and Colin Brain Research Fellow in Corporate Governance and Ethics at Queensland University of Technology. His research interests span across boards of directors and the role of financial information and corporate disclosure on capital markets. Specifically he is studying how information risk faced by board members and its effects on the decision-making quality and monitoring in the boardroom.
Jan Recker is Alexander-von-Humboldt Fellow and tenured Full Professor of Information Systems at Queensland University of Technology. His research focuses on process-oriented systems analysis, Green Information Systems and IT-enabled innovation. He has written a textbook on scientific research in Information Systems that is used in many doctoral programs all over the world. He is Editor-in-Chief of the Communications of the Association for Information Systems, and Associate Editor for the MIS Quarterly.
This book offers postgraduate and early career researchers in accounting and information systems a guide to choosing, executing and reporting appropriate data analysis methods to answer their research questions. It provides readers with a basic understanding of the steps that each method involves, and of the facets of the analysis that require special attention. Rather than presenting an exhaustive overview of the methods or explaining them in detail, the book serves as a starting point for developing data analysis skills: it provides hands-on guidelines for conducting the most common analyses and reporting results, and includes pointers to more extensive resources. Comprehensive yet succinct, the book is brief and written in a language that everyone can understand - from students to those employed by organizations wanting to study the context in which they work. It also serves as a refresher for researchers who have learned data analysis techniques previously but who need a reminder for the specific study they are involved in.