Part One: Fundamentals 1. Standards for metal additive manufacturing: Quality and quality control procedures 2. Processing-microstructure-property relationship for AM metals and the effect of thermal properties 3. Process-dependent material characteristics of DMLSmanufactured specimens 4. Structural defects and mechanical properties of additively manufactured parts 5. Microstructural features in metallic parts made by AM 6. Additive manufacturing processes for metals
Part Two: Process, microstructure, property for AM metals: Experimental investigations 7. Postprocess treatments for surface quality improvement, mitigation of defects, and microstructural control 8. Linking materials systems approach to alloy design and part qualification for laser powder bed fusion additive manufacturing 9. Microstructure and mechanical property correlation for additively manufactured aluminum-silicon alloys
Part Three: Improvement/optimization of am part quality by predictive simulation methods 10. A multiscale simulation approach to parametric investigation of process parameters in the characteristics and mechanical properties of AlSi10Mg parts manufactured by LPBF 11. Residual stress analysis and geometrical tolerances in powder bed fusion and direct energy deposition processes 12. Wire arc additive manufacturing of light metals: From experimental investigation to numerical process simulation and microstructural modeling 13. Predictive simulation of microstructural pattern in additively manufactured metallic materials 14. Rapid alloying in additive manufacturing using integrated computational materials engineering
Part Four: Future perspectives and applications of AM industrial products 15. Prospects of additively manufactured nickel aluminum bronzes for marine applications 16. Quality of AM implants in biomedical application 17. Quality of AM parts in automotive application: Design-processproperty relation for automotive parts 18. Metal-3D-printed permeable leading edges for airfoil noise reduction 19. Highly efficient and resource-saving function-integrated additively manufactured components for the mobility of tomorrow