ISBN-13: 9788328910201 / Polski / broszurowa / 2024 / 248 str.
Python w data science. Praktyczne wprowadzenie Python jest idealnym wyborem dla danologów, którzy chcą w prosty sposób uzyskiwać dostęp do dowolnego rodzaju danych, przetwarzać je i analizować. Służy do tego zarówno bogaty zestaw wbudowanych struktur danych, jak i solidny zbiór przeznaczonych do ich analizy bibliotek open source . Sam język pozwala na tworzenie zwięzłego kodu przy minimalnym nakładzie czasu i wysiłku: jeden wiersz kodu może filtrować, przekształcać i agregować dane. Tę książkę docenią średnio zaawansowani użytkownicy Pythona, którzy tworzą aplikacje korzystające z osiągnięć nauki o danych. Znajdziesz w niej omówienie możliwości języka, wbudowanych struktur danych Pythona, jak również takich bibliotek jak NumPy, pandas, scikit-learn i matplotlib. Nauczysz się wczytywania danych w różnych formatach, porządkowania, grupowania i agregowana zbiorów danych, a także tworzenia wykresów i map. Poszczególne zagadnienia zostały zilustrowane praktycznymi przykładami tworzenia rzeczywistych aplikacji, takich jak system obsługi taksówek z wykorzystaniem danych lokalizacyjnych, analiza reguł asocjacyjnych dla danych transakcji czy też uczenie maszynowe modelu przewidującego zmiany kursów akcji. Każdy rozdział zawiera interesujące ćwiczenia, które pozwolą Ci nabrać biegłości w stosowaniu opisanych tu technik. Dzięki tej książce nauczysz się: efektywnie korzystać ze struktur danych Pythona wyciągać cenne informacje z danych posługiwać się danymi: tekstowymi, przestrzennymi, szeregami czasowymi korzystać z wielu typów i formatów danych, w tym JSON i CSV używać technik uczenia maszynowego do celów przetwarzania języka naturalnego Python: Twój najlepszy sojusznik w przetwarzaniu danych!
Python w data science. Praktyczne wprowadzenie Python jest idealnym wyborem dla danologów, którzy chcą w prosty sposób uzyskiwać dostęp do dowolnego rodzaju danych, przetwarzać je i analizować. Służy do tego zarówno bogaty zestaw wbudowanych struktur danych, jak i solidny zbiór przeznaczonych do ich analizy bibliotek open source . Sam język pozwala na tworzenie zwięzłego kodu przy minimalnym nakładzie czasu i wysiłku: jeden wiersz kodu może filtrować, przekształcać i agregować dane. Tę książkę docenią średnio zaawansowani użytkownicy Pythona, którzy tworzą aplikacje korzystające z osiągnięć nauki o danych. Znajdziesz w niej omówienie możliwości języka, wbudowanych struktur danych Pythona, jak również takich bibliotek jak NumPy, pandas, scikit-learn i matplotlib. Nauczysz się wczytywania danych w różnych formatach, porządkowania, grupowania i agregowana zbiorów danych, a także tworzenia wykresów i map. Poszczególne zagadnienia zostały zilustrowane praktycznymi przykładami tworzenia rzeczywistych aplikacji, takich jak system obsługi taksówek z wykorzystaniem danych lokalizacyjnych, analiza reguł asocjacyjnych dla danych transakcji czy też uczenie maszynowe modelu przewidującego zmiany kursów akcji. Każdy rozdział zawiera interesujące ćwiczenia, które pozwolą Ci nabrać biegłości w stosowaniu opisanych tu technik. Dzięki tej książce nauczysz się: efektywnie korzystać ze struktur danych Pythona wyciągać cenne informacje z danych posługiwać się danymi: tekstowymi, przestrzennymi, szeregami czasowymi korzystać z wielu typów i formatów danych, w tym JSON i CSV używać technik uczenia maszynowego do celów przetwarzania języka naturalnego Python: Twój najlepszy sojusznik w przetwarzaniu danych!