• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Pyspark Recipes: A Problem-Solution Approach with Pyspark2 » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Pyspark Recipes: A Problem-Solution Approach with Pyspark2

ISBN-13: 9781484231401 / Angielski / Miękka / 2017 / 265 str.

Raju Kumar Mishra
Pyspark Recipes: A Problem-Solution Approach with Pyspark2 Mishra, Raju Kumar 9781484231401 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Pyspark Recipes: A Problem-Solution Approach with Pyspark2

ISBN-13: 9781484231401 / Angielski / Miękka / 2017 / 265 str.

Raju Kumar Mishra
cena 242,07 zł
(netto: 230,54 VAT:  5%)

Najniższa cena z 30 dni: 231,29 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Informatyka, Internet
Kategorie BISAC:
Computers > Data Science - Data Analytics
Computers > Programming - Object Oriented
Computers > Languages - General
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484231401
Rok wydania:
2017
Ilość stron:
265
Waga:
0.45 kg
Wymiary:
15.9 x 23.8 x 2.1
Oprawa:
Miękka
Wolumenów:
01

Chapter 1:  The era of Big Data and Hadoop
Chapter Goal:
Reader learns  about Big data and  its usefulness.  Also how Hadoop and its ecosystem is beautifully able to process big data for useful informations. What are the shortcomings  of Hadoop which requires another Big data processing platform.
No of pages 15-20
Sub -Topics
1. Introduction to Big-Data
2. Big Data challenges and processing technology 
3. Hadoop, structure and its ecosystem
4. Shortcomings of Hadoop

Chapter 2: Python, NumPy and SciPy
Chapter Goal:
The goal of this chapter to get reader acquainted with Python, NumPy and SciPy. 

No of pages: 25-30
Sub - Topics
1.  Introduction to Python
2. Python collection, String Function and Class
3. NumPy and ndarray
4. SciPy
Cha
pter 3:  Spark : Introduction, Installation, Structure and PySpark
Chapter Goal:
This chapters will introduce Spark, Installation on Single machine. There after it continues with structure of Spark. Finally, PySpark is introduced.
No of pages : 15-20
Sub - Topics:  
1. Introduction to Spark
2. Spark installation on Ubuntu
3.  Spark architecture
4. PySpark and Its architecture

Chapter 4: Resilient Distributed Dataset (RDD)
Chapter Goal:
Chapter deals with the core of Spark, RDD.  Operation on RDD
No of pages: 25-30
Sub - Topics: 
1. Introduction to RDD and its characteristics
2. Transformation and Actions
2. Operations on RDD ( like map, filter, set operations and many more)

Chapter 5: The power of pairs : Paired RDD
Chapter Goal:
Paired RDD can
help in making many complex computation easy in programming. Learners will learn paired RDD and operation on this.
No of pages:15 -20
Sub - Topics: 
1. Introduction to Paired RDD
2. Operation on paired RDD (mapByKey, reduceByKey …...)
 
Chapter 6:  Advance PySpark and PySpark application optimization
Chapter Goal: 30-35
Reader will learn about Advance PySpark topics broadcast and accumulator. In this chapter learner will learn about PySpark application optimization. 
No of pages:
Sub - Topics: 
1. Spark Accumulator
2. Spark Broadcast
3. Spark Code Optimization

Chapter 7: IO in PySpark
Chapter Goal:
We will learn PySpark IO in this chapter. Reading and writing .csv file and .json files. We will also learn how to connect to different databases with PySpark.
No of pages:20-30
Su
b - Topics: 
1. Reading and writing JSON  and .csv files
2. Reading data from HDFS
3. Reading data from different databases and writing data to different databases

Chapter 8: PySpark Streaming
Chapter Goal:
Reader will understand real time data analysis with PySpark Streaming. This chapter is focus on  PySpark Streaming architecture, Discretized stream operations and windowing operations.
No of pages:30-40
Sub - Topics: 
1. PySpark Streaming architecture
2. Discretized Stream and operations
3. Concept of windowing operations

Chapter 9:  SparkSQL
Chapter Goal:
In this chapter reader will learn about SparkSQL.  SparkSQL Dataframe is introduced in this chapter. In this chapter learner will learn how to use SQL commands using SparkSQL
No of pages: 40-50
Sub - Topics: 
1. SparkSQL
2. SQL with SparkSQL
3. Hive commands with SparkSQL


Raju Mishra has strong interests in data science and systems that have the capability of handling large amounts of data and operating complex mathematical models through computational programming. He was inspired to pursue an M. Tech in computational sciences from Indian Institute of Science in Bangalore, India. Raju primarily works in the areas of data science and its different applications. Working as a corporate trainer he has developed unique insights that help him in teaching and explaining complex ideas with ease. Raju is also a data science consultant solving complex industrial problems. He works on programming tools such as R, Python, scikit-learn, Statsmodels, Hadoop, Hive, Pig, Spark, and many others.

Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved!

PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model.

What You Will Learn:  
  • Understand the advanced features of PySpark and SparkSQL
  • Optimize your code
  • Program SparkSQL with Python
  • Use Spark Streaming and Spark MLlib with Python
  • Perform graph analysis with GraphFrames



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia