• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Projective Geometry » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Projective Geometry

ISBN-13: 9780387406237 / Angielski / Miękka / 2003 / 162 str.

H. S. M. Coxeter
Projective Geometry H. S. M. Coxeter 9780387406237 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Projective Geometry

ISBN-13: 9780387406237 / Angielski / Miękka / 2003 / 162 str.

H. S. M. Coxeter
cena 181,55 zł
(netto: 172,90 VAT:  5%)

Najniższa cena z 30 dni: 173,46 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, repectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometria
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9780387406237
Rok wydania:
2003
Wydanie:
1974. 2nd Print
Ilość stron:
162
Waga:
0.25 kg
Wymiary:
22.86 x 15.49 x 0.76
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

1 Introduction.- 1.1 What is projective geometry?.- 1.2 Historical remarks.- 1.3 Definitions.- 1.4 The simplest geometric objects.- 1.5 Projectivities.- 1.6 Perspectivities.- 2 Triangles and Quadrangles.- 2.1 Axioms.- 2.2 Simple consequences of the axioms.- 2.3 Perspective triangles.- 2.4 Quadrangular sets.- 2.5 Harmonic sets.- 3 The Principle of Duality.- 3.1 The axiomatic basis of the principle of duality.- 3.2 The Desargues configuration.- 3.3 The invariance of the harmonic relation.- 3.4 Trilinear polarity.- 3.5 Harmonic nets.- 4 The Fundamental Theorem and Pappus’s Theorem.- 4.1 How three pairs determine a projectivity.- 4.2 Some special projectivities.- 4.3 The axis of a projectivity.- 4.4 Pappus and Desargues.- 5 One-dimensional Projectivities.- 5.1 Superposed ranges.- 5.2 Parabolic projectivities.- 5.3 Involutions.- 5.4 Hyperbolic involutions.- 6 Two-dimensional Projectivities.- 6.1 Projective collineations.- 6.2 Perspective collineations.- 6.3 Involutory collineations.- 6.4 Projective correlations.- 7 Polarities.- 7.1 Conjugate points and conjugate lines.- 7.2 The use of a self-polar triangle.- 7.3 Polar triangles.- 7.4 A construction for the polar of a point.- 7.5 The use of a self-polar pentagon.- 7.6 A self-conjugate quadrilateral.- 7.7 The product of two polarities.- 7.8 The self-polarity of the Desargues configuration.- 8 The Conic.- 8.1 How a hyperbolic polarity determines a conic.- 8.2 The polarity induced by a conic.- 8.3 Projectively related pencils.- 8.4 Conics touching two lines at given points.- 8.5 Steiner’s definition for a conic.- 9 The Conic, Continued.- 9.1 The conic touching five given lines.- 9.2 The conic through five given points.- 9.3 Conics through four given points.- 9.4 Two self-polar triangles.- 9.5 Degenerate conies.- 10 A Finite Projective Plane.- 10.1 The idea of a finite geometry.- 10.2 A combinatorial scheme for PG(2, 5).- 10.3 Verifying the axioms.- 10.4 Involutions.- 10.5 Collineations and correlations.- 10.6 Conies.- 11 Parallelism.- 11.1 Is the circle a conic?.- 11.2 Affine space.- 11.3 How two coplanar lines determine a flat pencil and a bundle.- 11.4 How two planes determine an axial pencil.- 11.5 The language of pencils and bundles.- 11.6 The plane at infinity.- 11.7 Euclidean space.- 12 Coordinates.- 12.1 The idea of analytic geometry.- 12.2 Definitions.- 12.3 Verifying the axioms for the projective plane.- 12.4 Projective collineations.- 12.5 Polarities.- 12.6 Conics.- 12.7 The analytic geometry of PG(2, 5).- 12.8 Cartesian coordinates.- 12.9 Planes of characteristic two.- Answers to Exercises.- References.

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. This book introduces the important concepts of the subject and provides the logical foundations, as well as showing the connections among projective, Euclidean, and analytic geometry.

In Euclidean geometry, constructions are made with a ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity.

This classic book introduces the important concepts of the subject and provides the logical foundations, including the famous theorems of Desargues and Pappus and a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in this account is then utilized to deal with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The book concludes by demonstrating the connections among projective, Euclidean, and analytic geometry.

From the reviews of Projective Geometry:

...The book is written with all the grace and lucidity that characterize the author's other writings. ... 

-T. G. Room, Mathematical Reviews

This is an elementary introduction to projective geometry based on the intuitive notions of perspectivity and projectivity and, formally, on axioms essentially the same as the classical ones of Vebber and Young...This book is an excellent introduction.

- T. G. Ostrom, Zentralblatt



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia