ISBN-13: 9781119518082 / Angielski / Twarda / 2019 / 592 str.
ISBN-13: 9781119518082 / Angielski / Twarda / 2019 / 592 str.
Foreword xvAcknowledgments xviiAbout the Companion Website xix1 Introduction 11.1 Energy and Fluid Machines 11.1.1 Energy conversion of fossil fuels 11.1.2 Steam turbines 21.1.3 Gas turbines 31.1.4 Hydraulic turbines 41.1.5 Wind turbines 51.1.6 Compressors 51.1.7 Pumps and blowers 51.1.8 Other uses and issues 61.2 Historical Survey 71.2.1 Water power 71.2.2 Wind turbines 81.2.3 Steam turbines 91.2.4 Jet propulsion 101.2.5 Industrial turbines 111.2.6 Pumps and compressors 111.2.7 Note on units 122 Principles of Thermodynamics and Fluid Flow 152.1 Mass Conservation Principle 152.2 First Law of Thermodynamics 172.3 Second Law of Thermodynamics 192.3.1 Tds-equations 192.4 Equations of State 202.4.1 Properties of steam 212.4.2 Ideal gases 272.4.3 Air tables and isentropic relations 292.4.4 Ideal gas mixtures 322.4.5 Incompressibility 362.4.6 Stagnation state 372.5 Efficiency 372.5.1 Efficiency measures 372.5.2 Thermodynamic losses 432.5.3 Incompressible fluid 452.5.4 Compressible flows 462.6 Momentum Balance 48Exercises 563 Compressible Flow 633.1 Mach Number and The Speed of Sound 633.1.1 Mach number relations 653.2 Isentropic Flow with Area Change 673.2.1 Converging nozzle 713.3 Influence of Friction on Flow Through Nozzles 733.3.1 Polytropic efficiency 733.3.2 Loss coefficients 773.3.3 Nozzle efficiency 813.3.4 Combined Fanno flow and area change 823.4 Supersonic Nozzle 873.5 Normal Shocks 903.5.1 Rankine-Hugoniot relations 953.6 Moving Shocks 983.7 Oblique shocks and Expansion Fans 1003.7.1 Mach waves 1003.7.2 Oblique shocks 1013.7.3 Supersonic flow over a rounded concave corner 1073.7.4 Reflected shocks and shock interactions 1083.7.5 Mach reflection 1103.7.6 Detached oblique shocks 1103.7.7 Prandtl-Meyer theory 112Exercises 1244 Gas Dynamics of Wet Steam 1314.1 Compressible Flow of Wet Steam 1324.1.1 Clausius-Clapeyron equation 1324.1.2 Adiabatic exponent 1334.2 Conservation Equations for Wet Steam 1374.2.1 Relaxation times 1394.2.2 Conservation equations in their working form 1444.2.3 Sound speeds 1464.3 Relaxation Zones 1494.3.1 Type I wave 1494.3.2 Type II wave 1544.3.3 Type III wave 1574.3.4 Combined relaxation 1574.3.5 Flow in a variable area nozzle 1594.4 Shocks in Wet Steam 1614.4.1 Evaporation in the flow after the shock 1644.5 Condensation Shocks 1674.5.1 Jump conditions across a condensation shock 169Exercises 1745 Principles of Turbomachine Analysis 1775.1 Velocity Triangles 1785.2 Moment of Momentum Balance 1815.3 Energy Transfer in Turbomachines 1825.3.1 Trothalpy and specific work in terms of velocities 1865.3.2 Degree of reaction 1895.4 Utilization 1915.5 Scaling and Similitude 1985.5.1 Similitude 1985.5.2 Incompressible flow 1995.5.3 Shape parameter or specific speed and specific diameter 2025.5.4 Compressible flow analysis 2065.6 Performance Characteristics 2085.6.1 Compressor performance map 2085.6.2 Turbine performance map 209Exercises 2106 Steam Turbines 2156.1 Introduction 2156.2 Impulse Turbines 2176.2.1 Single-stage impulse turbine 2176.2.2 Pressure compounding 2266.2.3 Blade shapes 2306.2.4 Velocity compounding 2336.3 Stage with Zero Reaction 2386.4 Loss Coefficients 241Exercises 2437 Axial Turbines 2477.1 Introduction 2477.2 Turbine Stage Analysis 2497.3 Flow and Loading Coefficients and Reaction Ratio 2537.3.1 Fifty percent (50%) stage 2587.3.2 Zero percent (0%) reaction stage 2627.3.3 Off-design operation 2637.3.4 Variable axial velocity 2657.4 Three-Dimensional Flow and Radial Equilibrium 2677.4.1 Free vortex flow 2697.4.2 Fixed blade angle 2737.4.3 Constant mass flux 2737.5 Turbine Efficiency and Losses 2767.5.1 Soderberg loss coefficients 2767.5.2 Stage efficiency 2777.5.3 Stagnation pressure losses 2797.5.4 Performance charts 2857.5.5 Zweifel correlation 2907.5.6 Further discussion of losses 2917.5.7 Ainley-Mathieson correlation 2937.5.8 Secondary loss 2967.6 Multistage Turbine 3027.6.1 Reheat factor in a multistage turbine 3027.6.2 Polytropic or small-stage efficiency 304Exercises 3058 Axial Compressors 3118.1 Compressor Stage Analysis 3128.1.1 Stage temperature and pressure rise 3138.1.2 Analysis of a repeating stage 3158.2 Design Deflection 3218.2.1 Compressor performance map 3248.3 Radial Equilibrium 3268.3.1 Modified free vortex velocity distribution 3278.3.2 Velocity distribution with zero-power exponent 3308.3.3 Velocity distribution with first-power exponent 3318.4 Diffusion Factor 3338.4.1 Momentum thickness of a boundary layer 3358.5 Efficiency and Losses 3398.5.1 Efficiency 3398.5.2 Parametric calculations 3428.6 Cascade Aerodynamics 3438.6.1 Blade shapes and terms 3448.6.2 Blade forces 3458.6.3 Other losses 3478.6.4 Diffuser performance 3488.6.5 Flow deviation and incidence 3498.6.6 Multi-stage compressor 3518.6.7 Compressibility effects 3528.6.8 Design of a compressor 353Exercises 3599 Centrifugal Compressors and Pumps 3639.1 Compressor Analysis 3649.1.1 Slip factor 3659.1.2 Pressure ratio 3679.2 Inlet Design 3749.2.1 Choking of the inducer 3799.3 Exit Design 3819.3.1 Performance characteristics 3819.3.2 Diffusion ratio 3849.3.3 Blade height 3859.4 Vaneless Diffuser 3879.5 Centrifugal Pumps 3919.5.1 Specific speed and specific diameter 3959.6 Fans 4039.7 Cavitation 4049.8 Diffuser and Volute Design 4069.8.1 Vaneless diffuser 4069.8.2 Volute design 407Exercises 41110 Radial Inflow Turbines 41510.1 Turbine Analysis 41610.2 Efficiency 42110.3 Specific Speed and Specific Diameter 42510.4 Stator Flow 43110.4.1 Loss coefficients for stator flow 43610.5 Design of the Inlet of a Radial Inflow Turbine 44010.5.1 Minimum inlet Mach number 44110.5.2 Blade stagnation Mach number 44710.5.3 Inlet relative Mach number 44910.6 Design of the Exit 45010.6.1 Minimum exit Mach number 45010.6.2 Radius ratio r3s/r2 45310.6.3 Blade height-to-radius ratio b2/r2 45410.6.4 Optimum incidence angle and the number of blades 455Exercises 46011 Hydraulic Turbines 46311.1 Hydroelectric Power Plants 46311.2 Hydraulic Turbines and their Specific Speed 46511.3 Pelton Wheel 46711.4 Francis Turbine 47511.5 Kaplan Turbine 48311.6 Cavitation 486Exercises 48812 Hydraulic Transmission of Power 49112.1 Fluid Couplings 49112.1.1 Fundamental relations 49212.1.2 Flow rate and hydrodynamic losses 49412.1.3 Partially filled coupling 49612.2 Torque Converters 49712.2.1 Fundamental relations 49712.2.2 Performance 500Exercises 50413 Wind Turbines 50713.1 Horizontal-Axis Wind Turbine 50813.2 Momentum Theory of Wind Turbines 50913.2.1 Axial momentum 50913.2.2 Ducted wind turbine 51413.2.3 Wake rotation 51613.2.4 Irrotational wake 51813.3 Blade Element Theory 52213.3.1 Nonrotating wake 52213.3.2 Wake with rotation 52513.3.3 Ideal wind turbine 53013.3.4 Prandtl's tip correction 53213.4 Turbomachinery and Future Prospects for Energy 535Exercises 536Appendix A: Streamline Curvature and Radial Equilibrium 539A.1 Streamline Curvature Method 539A.1.1 Fundamental equations 539A.1.2 Formal solution 543Appendix B: Thermodynamic Tables 545References 559Index 565
SEPPO A. KORPELA, PHD, has taught in the mechanical engineering department of Ohio State University for 40 years. He has engaged in research in thermal sciences and engineering, which has resulted in over 50 journal publications, and written about the world's energy recourses.
1997-2024 DolnySlask.com Agencja Internetowa