ISBN-13: 9781591690146 / Angielski / Twarda / 2005 / 818 str.
ISBN-13: 9781591690146 / Angielski / Twarda / 2005 / 818 str.
This book is essential for anyone involved in the design of high-performance heat exchangers or heat devices, also known as "second generation heat transfer technology." Enhanced surfaces are geometrics with special shapes that promote much higher rates of heat transfer than smooth or plain surfaces. This revision presents the subject matter just beyond the introductory level and traces the advancement of heat transfer research in areas such as integral-fin and micro-fin tubes, complex plate-fin geometries, and micro-channels for single-phase and two-phase applications.
□C□H□A□P□T□E□R□ □1□:□ □ □I□N□T□R□O□D□U□C□T□I□O□N□ □T□O□ □E□N□H□A□N□C□E□D□ □H□E□A□T□ □T□R□A□N□S□F□E□R□<□b□r□>□<□b□r□>□1□.□1□ □ □I□N□T□R□O□D□U□C□T□I□O□N□ □<□b□r□>□<□b□r□>□1□.□2□ □ □T□H□E□ □E□N□H□A□N□C□E□M□E□N□T□ □T□E□C□H□N□I□Q□U□E□S□ □<□b□r□>□P□a□s□s□i□v□e□ □T□e□c□h□n□i□q□u□e□s□ □<□b□r□>□A□c□t□i□v□e□ □T□e□c□h□n□i□q□u□e□s□ □<□b□r□>□<□b□r□>□1□.□2□.□3□ □ □T□e□c□h□n□i□q□u□e□ □v□s□.□ □M□o□d□e□ □<□b□r□>□<□b□r□>□1□.□3□ □ □P□U□B□L□I□S□H□E□D□ □L□I□T□E□R□A□T□U□R□E□ □<□b□r□>□G□e□n□e□r□a□l□ □R□e□m□a□r□k□s□ □<□b□r□>□U□.□S□.□ □P□a□t□e□n□t□ □L□i□t□e□r□a□t□u□r□e□ □<□b□r□>□M□a□n□u□f□a□c□t□u□r□e□r□'□s□ □I□n□f□o□r□m□a□t□i□o□n□ □<□b□r□>□<□b□r□>□1□.□4□ □ □B□E□N□E□F□I□T□S□ □O□F□ □E□N□H□A□N□C□E□M□E□N□T□ □<□b□r□>□<□b□r□>□1□.□5□ □ □C□O□M□M□E□R□C□I□A□L□ □A□P□P□L□I□C□A□T□I□O□N□S□ □O□F□ □E□N□H□A□N□C□E□D□ □S□U□R□F□A□C□E□S□ □<□b□r□>□H□e□a□t□ □(□a□n□d□ □M□a□s□s□)□ □E□x□c□h□a□n□g□e□r□ □T□y□p□e□s□ □o□f□ □I□n□t□e□r□e□s□t□ □<□b□r□>□I□l□l□u□s□t□r□a□t□i□o□n□s□ □o□f□ □E□n□h□a□n□c□e□d□ □T□u□b□u□l□a□r□ □S□u□r□f□a□c□e□s□ □<□b□r□>□E□n□h□a□n□c□e□d□ □F□i□n□ □G□e□o□m□e□t□r□i□e□s□ □f□o□r□ □G□a□s□e□s□ □<□b□r□>□P□l□a□t□e□ □T□y□p□e□ □H□e□a□t□ □E□x□c□h□a□n□g□e□r□s□ □<□b□r□>□C□o□o□l□i□n□g□ □T□o□w□e□r□ □P□a□c□k□i□n□g□s□ □<□b□r□>□D□i□s□t□i□l□l□a□t□i□o□n□ □a□n□d□ □C□o□l□u□m□n□ □P□a□c□k□i□n□g□s□ □<□b□r□>□F□a□c□t□o□r□s□ □A□f□f□e□c□t□i□n□g□ □C□o□m□m□e□r□c□i□a□l□ □D□e□v□e□l□o□p□m□e□n□t□ □<□b□r□>□<□b□r□>□1□.□6□ □ □D□E□F□I□N□I□T□I□O□N□ □O□F□ □H□E□A□T□ □T□R□A□N□S□F□E□R□ □A□R□E□A□ □<□b□r□>□<□b□r□>□1□.□7□ □ □P□O□T□E□N□T□I□A□L□ □F□O□R□ □E□N□H□A□N□C□E□M□E□N□T□ □<□b□r□>□P□E□C□ □E□x□a□m□p□l□e□ □1□.□1□ □<□b□r□>□P□E□C□ □E□x□a□m□p□l□e□ □1□.□2□ □<□b□r□>□<□b□r□>□1□.□8□ □ □R□E□F□E□R□E□N□C□E□S□ □<□b□r□>□<□b□r□>□C□H□A□P□T□E□R□ □2□:□ □ □H□E□A□T□ □T□R□A□N□S□F□E□R□ □F□U□N□D□A□M□E□N□T□A□L□S□<□b□r□>□<□b□r□>□2□.□l□ □ □I□N□T□R□O□D□U□C□T□I□O□N□ □<□b□r□>□<□b□r□>□2□.□2□ □ □H□E□A□T□ □E□X□C□H□A□N□G□E□R□ □D□E□S□I□G□N□ □T□H□E□O□R□Y□ □<□b□r□>□T□h□e□r□m□a□l□ □A□n□a□l□y□s□i□s□ □<□b□r□>□H□e□a□t□ □E□x□c□h□a□n□g□e□r□ □D□e□s□i□g□n□ □M□e□t□h□o□d□s□ □<□b□r□>□C□o□m□p□a□r□i□s□o□n□ □o□f□ □L□M□T□D□ □a□n□d□ □N□T□U□ □D□e□s□i□g□n□ □M□e□t□h□o□d□s□ □<□b□r□>□<□b□r□>□2□.□3□ □ □F□I□N□ □E□F□F□I□C□I□E□N□C□Y□ □<□b□r□>□<□b□r□>□2□.□4□ □H□E□A□T□ □T□R□A□N□S□F□E□R□ □C□O□E□F□F□I□C□I□E□N□T□S□ □A□N□D□ □F□R□I□C□T□I□O□N□ □F□A□C□T□O□R□S□ □<□b□r□>□L□a□m□i□n□a□r□ □F□l□o□w□ □O□v□e□r□ □F□l□a□t□ □P□l□a□t□e□ □<□b□r□>□L□a□m□i□n□a□r□ □F□l□o□w□ □i□n□ □D□u□c□t□s□ □<□b□r□>□T□u□r□b□u□l□e□n□t□ □F□l□o□w□ □i□n□ □D□u□c□t□s□ □<□b□r□>□T□u□b□e□ □B□a□n□k□s□ □(□S□i□n□g□l□e□-□P□h□a□s□e□ □F□l□o□w□)□ □<□b□r□>□F□i□l□m□ □C□o□n□d□e□n□s□a□t□i□o□n□ □<□b□r□>□N□u□c□l□e□a□t□e□ □B□o□i□l□i□n□g□ □<□b□r□>□<□b□r□>□2□.□5□ □ □C□O□R□R□E□C□T□I□O□N□ □F□O□R□ □V□A□R□I□A□T□I□O□N□ □O□F□ □F□L□U□I□D□ □P□R□O□P□E□R□T□I□E□S□ □ □<□b□r□>□E□f□f□e□c□t□ □o□f□ □C□h□a□n□g□i□n□g□ □F□l□u□i□d□ □T□e□m□p□e□r□a□t□u□r□e□ □<□b□r□>□E□f□f□e□c□t□ □L□o□c□a□l□ □P□r□o□p□e□r□t□y□ □V□a□r□i□a□t□i□o□n□ □<□b□r□>□<□b□r□>□2□.□6□ □ □R□E□Y□N□O□L□D□S□ □A□N□A□L□O□G□Y□ □<□b□r□>□<□b□r□>□2□.□7□ □ □F□O□U□L□I□N□G□ □O□F□ □H□E□A□T□ □T□R□A□N□S□F□E□R□ □S□U□R□F□A□C□E□S□ □<□b□r□>□<□b□r□>□2□.□8□ □ □C□O□N□C□L□U□S□I□O□N□S□ □<□b□r□>□<□b□r□>□2□.□9□ □ □R□E□F□E□R□E□N□C□E□S□ □<□b□r□>□<□b□r□>□2□.□1□0□ □ □N□O□M□E□N□C□L□A□T□U□R□E□ □<□b□r□>□<□b□r□>□<□b□r□>□C□H□A□P□T□E□R□ □3□:□ □P□E□R□F□O□R□M□A□N□C□E□ □E□V□A□L□U□A□T□I□O□N□ □C□R□I□T□E□R□I□A□ □F□O□R□ □S□I□N□G□L□E□-□P□H□A□S□E□ □F□L□O□W□S□<□b□r□>□<□b□r□>□3□.□1□ □P□E□R□F□O□R□M□A□N□C□E□ □E□V□A□L□U□A□T□I□O□N□ □C□R□I□T□E□R□I□A□ □(□P□E□C□)□ □<□b□r□>□<□b□r□>□3□.□2□ □ □P□E□C□ □F□O□R□ □H□E□A□T□ □E□X□C□H□A□N□G□E□R□S□ □<□b□r□>□<□b□r□>□3□.□3□ □ □P□E□C□ □F□O□R□ □S□I□N□G□L□E□ □P□H□A□S□E□ □F□L□O□W□ □<□b□r□>□O□b□j□e□c□t□i□v□e□ □F□u□n□c□t□i□o□n□ □a□n□d□ □C□o□n□s□t□r□a□i□n□t□s□ □<□b□r□>□A□l□g□e□b□r□a□i□c□ □F□o□r□m□u□l□a□t□i□o□n□ □o□f□ □t□h□e□ □P□E□C□ □<□b□r□>□S□i□m□p□l□e□ □S□u□r□f□a□c□e□ □P□e□r□f□o□r□m□a□n□c□e□ □C□o□m□p□a□r□i□s□o□n□ □<□b□r□>□C□o□n□s□t□a□n□t□ □F□l□o□w□ □R□a□t□e□ □<□b□r□>□F□i□x□e□d□ □F□l□o□w□ □A□r□e□a□ □<□b□r□>□<□b□r□>□3□.□4□ □T□H□E□R□M□A□L□ □R□E□S□I□S□T□A□N□C□E□ □O□N□ □B□O□T□H□ □S□I□D□E□S□ □<□b□r□>□<□b□r□>□3□.□5□ □ □R□E□L□A□T□I□O□N□S□ □F□O□R□ □S□t□ □A□N□D□ □f□ □<□b□r□>□<□b□r□>□3□.□6□ □ □H□E□A□T□ □E□X□C□H□A□N□G□E□R□ □E□F□F□E□C□T□I□V□E□N□E□S□S□ □<□b□r□>□<□b□r□>□3□.□7□ □ □E□F□F□E□C□T□ □O□F□ □R□E□D□U□C□E□D□ □E□X□C□H□A□N□G□E□R□ □F□L□O□W□ □R□A□T□E□ □<□b□r□>□<□b□r□>□3□.□8□ □ □F□L□O□W□ □N□O□R□M□A□L□ □T□O□ □F□I□N□N□E□D□ □T□U□B□E□ □B□A□N□K□S□ □<□b□r□>□<□b□r□>□3□.□9□ □ □V□A□R□I□A□N□T□S□ □O□F□ □T□H□E□ □P□E□C□ □<□b□r□>□<□b□r□>□3□.□1□0□ □ □C□O□M□M□E□N□T□S□ □O□N□ □O□T□H□E□R□ □P□E□R□F□O□R□M□A□N□C□E□ □I□N□D□I□C□A□T□O□R□S□ □<□b□r□>□S□h□a□h□ □<□b□r□>□S□o□l□a□n□d□ □e□t□ □a□l□.□ □<□b□r□>□<□b□r□>□3□.□1□1□ □ □C□O□N□C□L□U□S□I□O□N□S□ □ □<□b□r□>□<□b□r□>□3□.□1□2□ □ □R□E□F□E□R□E□N□C□E□S□ □<□b□r□>□<□b□r□>□3□.□1□3□ □ □N□O□M□E□N□C□L□A□T□U□R□E□ □ □<□b□r□>□<□b□r□>□C□H□A□P□T□E□R□ □4□:□ □P□E□R□F□O□R□M□A□N□C□E□ □E□V□A□L□U□A□T□I□O□N□ □C□R□I□T□E□R□I□A□ □F□O□R□ □T□W□O□-□P□H□A□S□E□ □H□E□A□T□ □E□X□C□H□A□N□G□E□R□S□<□b□r□>□<□b□r□>□4□.□1□ □ □I□N□T□R□O□D□U□C□T□I□O□N□ □<□b□r□>□<□b□r□>□4□.□2□ □ □O□P□E□R□A□T□I□N□G□ □C□H□A□R□A□C□T□E□R□I□S□T□I□C□S□ □O□F□ □T□W□O□-□P□H□A□S□E□ □H□E□A□T□ □E□X□C□H□A□N□G□E□R□S□ □<□b□r□>□<□b□r□>□4□.□3□ □ □E□N□H□A□N□C□E□M□E□N□T□ □I□N□ □T□W□O□-□P□H□A□S□E□ □H□E□A□T□ □E□X□C□H□A□N□G□E□ □S□Y□S□T□E□M□S□ □<□b□r□>□W□o□r□k□ □C□o□n□s□u□m□i□n□g□ □S□y□s□t□e□m□s□ □<□b□r□>□W□o□r□k□ □P□r□o□d□u□c□i□n□g□ □S□y□s□t□e□m□s□ □<□b□r□>□H□e□a□t□ □A□c□t□u□a□t□e□d□ □S□y□s□t□e□m□s□ □<□b□r□>□<□b□r□>□4□.□4□ □P□E□C□ □F□O□R□ □T□W□O□-□P□H□A□S□E□ □H□E□A□T□ □E□X□C□H□A□N□G□E□ □S□Y□S□T□E□M□S□ □<□b□r□>□<□b□r□>□4□.□5□ □ □P□E□C□ □C□A□L□C□U□L□A□T□I□O□N□ □M□E□T□H□O□D□ □<□b□r□>□P□E□C□ □E□x□a□m□p□l□e□ □4□.□1□ □<□b□r□>□P□E□C□ □E□x□a□m□p□l□e□ □4□.□2□ □<□b□r□>□<□b□r□>□4□.□6□ □ □C□O□N□C□L□U□S□I□O□N□S□ □<□b□r□>□<□b□r□>□4□.□7□ □ □R□E□F□E□R□E□N□C□E□S□ □<□b□r□>□<□b□r□>□4□.□8□ □ □N□O□M□E□N□C□L□A□T□U□R□E□ □<□b□r□>□<□b□r□>□C□H□A□P□T□E□R□ □5□:□ □ □P□L□A□T□E□-□A□N□D□-□F□I□N□ □E□X□T□E□N□D□E□D□ □S□U□R□F□A□C□E□S□<□b□r□>□<□b□r□>□5□.□1□ □ □I□N□T□R□O□D□U□C□T□I□O□N□ □<□b□r□>□<□b□r□>□5□.□2□ □O□F□F□S□E□T□-□S□T□R□I□P□ □F□I□N□ □<□b□r□>□5□.□2□.□1□ □E□n□h□a□n□c□e□m□e□n□t□ □P□r□i□n□c□i□p□l□e□<□b□r□>□5□.□2□.□2□ □P□E□C□ □E□x□a□m□p□l□e□ □5□.□1□ □<□b□r□>□5□.□2□.□3□ □A□n□a□l□y□t□i□c□a□l□l□y□ □B□a□s□e□d□ □M□o□d□e□l□s□ □f□o□r□ □j□ □a□n□d□ □f□ □v□s□.□ □R□e□ □<□b□r□>□5□.□2□.□4□ □T□r□a□n□s□i□t□i□o□n□ □f□r□o□m□ □L□a□m□i□n□a□r□ □t□o□ □T□u□r□b□u□l□e□n□t□ □R□e□g□i□o□n□ □<□b□r□>□5□.□2□.□5□ □ □C□o□r□r□e□l□a□t□i□o□n□s□ □f□o□r□ □j□ □a□n□d□ □f□ □v□s□.□ □R□e□ □<□b□r□>□5□.□2□.□6□ □U□s□e□ □o□f□ □O□S□F□ □w□i□t□h□ □L□i□q□u□i□d□s□ □<□b□r□>□5□.□2□.□7□ □E□f□f□e□c□t□ □o□f□ □P□e□r□c□e□n□t□ □F□i□n□ □O□f□f□s□e□t□ □<□b□r□>□5□.□2□.□7□ □E□f□f□e□c□t□ □o□f□ □B□u□r□r□e□d□ □E□d□g□e□s□<□b□r□>□<□b□r□>□5□.□3□ □ □L□O□U□V□E□R□ □F□I□N□ □<□b□r□>□5□.□3□.□1□ □ □H□e□a□t□ □T□r□a□n□s□f□e□r□ □a□n□d□ □F□r□i□c□t□i□o□n□ □C□o□r□r□e□l□a□t□i□o□n□s□ □<□b□r□>□5□.□3□.□2□ □ □F□l□o□w□ □S□t□r□u□c□t□u□r□e□ □i□n□ □t□h□e□ □L□o□u□v□e□r□ □F□i□n□ □A□r□r□a□y□ □<□b□r□>□5□.□3□.□3□ □ □A□n□a□l□y□t□i□c□a□l□ □M□o□d□e□l□ □f□o□r□ □H□e□a□t□ □T□r□a□n□s□f□e□r□ □a□n□d□ □F□r□i□c□t□i□o□n□ □<□b□r□>□5□.□3□.□4□ □P□E□C□ □E□x□a□m□p□l□e□ □5□.□2□ □<□b□r□>□<□b□r□>□5□.□4□ □ □C□O□N□V□E□X□ □L□O□U□V□E□R□ □F□I□N□ □<□b□r□>□<□b□r□>□5□.□ □5□ □ □W□A□V□Y□ □F□I□N□ □<□b□r□>□<□b□r□>□5□.□6□ □ □3□-□D□I□M□E□N□S□I□O□N□A□L□ □C□O□R□R□U□G□A□T□E□D□ □F□I□N□S□ □<□b□r□>□<□b□r□>□5□.□7□ □ □P□E□R□F□O□R□A□T□E□D□ □F□I□N□ □<□b□r□>□<□b□r□>□5□.□8□ □ □P□I□N□ □F□I□N□S□ □A□N□D□ □W□I□R□E□ □M□E□S□H□ □<□b□r□>□<□b□r□>□5□.□9□ □V□O□R□T□E□X□ □G□E□N□E□R□A□T□O□R□S□ □<□b□r□>□5□.□9□.□1□ □ □ □T□y□p□e□s□ □o□f□ □V□o□r□t□e□x□ □G□e□n□e□r□a□t□o□r□s□ □<□b□r□>□5□.□9□.□2□ □ □ □V□o□r□t□e□x□ □G□e□n□e□r□a□t□o□r□s□ □o□n□ □a□ □P□l□a□t□e□-□F□i□n□ □S□u□r□f□a□c□e□ □<□b□r□>□<□b□r□>□5□.□1□0□ □ □M□E□T□A□L□ □F□O□A□M□ □F□I□N□ □<□b□r□>□<□b□r□>□5□.□1□1□ □ □P□L□A□I□N□ □F□I□N□ □<□b□r□>□P□E□C□ □E□x□a□m□p□l□e□ □5□.□3□ □<□b□r□>□<□b□r□>□5□.□1□2□ □ □E□N□T□R□A□N□C□E□ □L□E□N□G□T□H□ □E□F□F□E□C□T□S□ □<□b□r□>□<□b□r□>□5□.□1□3□ □ □P□A□C□K□I□N□G□S□ □F□O□R□ □G□A□S□-□G□A□S□ □R□E□G□E□N□E□R□A□T□O□R□S□ □<□b□r□>□<□b□r□>□5□.□ □1□4□ □N□U□M□E□R□I□C□A□L□ □S□I□M□U□L□A□T□I□O□N□ □<□b□r□>□5□.□1□4□.□1□ □O□f□f□s□e
Ralph L. Webb is a Professor Emeritus of Mechanical Engineering at the Pennsylvania State University. He received his Ph.D. from the University of Minnesota, and has published over 275 papers in the general area of heat transfer enhancement and has eight U.S. patents on enhanced heat transfer surfaces. He has performed research on enhanced heat transfer in boiling, condensation, fouling, air-cooled heat exchangers, electronic equipment cooling, forced convection for gases and liquids, wetting coatings to promote drainage of thin liquid films, and frost formation.
Prof. Webb is the Founding Editor and Editor-in-Chief of the Journal of Enhanced Heat Transfer and is an editor of Heat Transfer Engineering journal. He is a recipient of the ASME Heat Transfer Memorial Award, the UK Refrigeration Institute Hall-Thermotank Gold Medal, and the AIChE Donald Q. Kern award. He is also a Fellow of ASME and ASHRAE and a Life Member of ASME.
Nae-Hyun Kim is a Professor of Mechanical Engineering at the University of Incheon, Korea. He earned his Ph.D. at the Pennsylvania State University in 1989 under the supervision of Prof. Webb. Since then, he has been closely working with air-conditioning and refrigeration industries, where enhanced heat transfer technology has been successfully employed. Prof. Kim has published more than 30 international journal and conference papers related to boiling, condensation, fouling, and forced convection of liquids and gases. He is a member of ASME and ASHRAE.
1997-2025 DolnySlask.com Agencja Internetowa