ISBN-13: 9783642510786 / Angielski / Miękka / 2012 / 323 str.
ISBN-13: 9783642510786 / Angielski / Miękka / 2012 / 323 str.
18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of ?4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler’s theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ?) onto the proper Lorentz group ? p.- 19.9 Simplicity of the rotation and Lorentz groups.- 20 Group Representations I: Rotations and Spherical Harmonics.- 20.1 Finite-dimensional representations of a group.- 20.2 Vector and tensor transformation laws.- 20.3 Other group representations in physics.- 20.4 Infinite-dimensional representations.- 20.5 A simple case: SO(2).- 20.6 Representations of matrix groups on X?.- 20.7 Homogeneous spaces.- 20.8 Regular representations.- 20.9 Representations of the rotation group SO(3).- 20.10 Tesseral harmonics; Legendre functions.- 20.11 Associated Legendre functions.- 20.12 Matrices of the irreducible representations of SO(3); the Euler angles.- 20.13 The addition theorem for tesseral harmonics.- 20.14 Completeness of the tesseral harmonics.- 21 Group Representations II: General; Rigid Motions; Bessel Functions.- 21.1 Equivalence; unitary representations.- 21.2 The reduction of representations.- 21.3 Schur’s Lemma and its corollaries.- 21.4 Compact and noncompact groups.- 21.5 Invariant integration; Haar measure.- 21.6 Complete system of representations of a compact group.- 21.7 Homogeneous spaces as configuration spaces in physics.- 21.8 M2 and related groups.- 21.9 Representations of M2.- 21.10 Some irreducible representations.- 21.11 Bessel functions.- 21.12 Matrices of the representations.- 21.13 Characters.- 22 Group Representations and Quantum Mechanics.- 22.1 Representations in quantum mechanics.- 22.2 Rotations of the axes.- 22.3 Ray representations.- 22.4 A finite-dimensional case.- 22.5 Local representations.- 22.6 Origin of the two-valued representations.- 22.7 Representations of SU(2) and SL(2, ?).- 22.8 Irreducible representations of SU(2).- 22.9 The characters of SU(2).- 22.10 Functions of z and z?.- 22.11 The finite-dimensional representations of SL(2, ?).- 22.12 The irreducible invariant subspaces of X? for SL(2, ?).- 22.13 Spinors.- 23 Elementary Theory of Manifolds.- 23.1 Examples of manifolds; method of identification.- 23.2 Coordinate systems or charts; compatibility; smoothness.- 23.3 Induced topology.- 23.4 Definition of manifold; Hausdorff separation axiom.- 23.5 Curves and functions in a manifold.- 23.6 Connectedness; components of a manifold.- 23.7 Global topology; homotopic curves; fundamental group.- 23.8 Mechanical linkages: Cartesian products.- 24 Covering Manifolds.- 24.1 Definition and examples.- 24.2 Principles of lifting.- 24.3 Universal covering manifold.- 24.4 Comments on the construction of mathematical models.- 24.5 Construction of the universal covering.- 24.6 Manifolds covered by a given manifold.- 25 Lie Groups.- 25.1 Definitions and statement of objectives.- 25.2 The expansions of m(·, ·) and l(·, ·).- 25.3 The Lie algebra of a Lie group.- 25.4 Abstract Lie algebras.- 25.5 The Lie algebras of linear groups.- 25.6 The exponential mapping; logarithmic coordinates.- 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad?.- 25.8 Auxiliary lemmas on formal derivatives.- 25.9 An auxiliary lemma on the differentiation of exponentials.- 25.10 The Campbell-Baker-Hausdorf (CBH) formula.- 25.11 Translation of charts; compatibility; G as an analytic manifold.- 25.12 Lie algebra homomorphisms.- 25.13 Lie group homomorphisms.- 25.14 Law of homomorphism for Lie groups.- 25.15 Direct and semidirect sums of Lie algebras.- 25.16 Classification of the simple complex Lie algebras.- 25.17 Models of the simple complex Lie algebras.- 25.18 Note on Lie groups and Lie algebras in physics.- Appendix to Chapter 25—Two nonlinear Lie groups.- 26 Metric and Geodesics on a Manifold.- 26.1 Scalar and vector fields on a manifold.- 26.2 Tensor fields.- 26.3 Metric in Euclidean space.- 26.4 Riemannian and pseudo-Riemannian manifolds.- 26.5 Raising and lowering of indices.- 26.6 Geodesies in a Riemannian manifold.- 26.7 Geodesies in a pseudo-Riamannian manifold M.- 26.8 Geodesies; the initial-value problem; the Lipschitz condition.- 26.9 The integral equation; Picard iterations.- 26.10 Geodesies; the two-point problem.- 26.11 Continuation of geodesies.- 26.12 Affmely connected manifolds.- 26.13 Riemannian and pseudo-Riemannian covering manifolds.- 27 Riemannian, Pseudo-Riemannian, and Affinely Connected Manifolds.- 27.1 Topology and metric.- 27.2 Geodesic or Riemannian coordinates.- 27.3 Normal coordinates in Riemannian and pseudo-Riemannian manifolds.- 27.4 Geometric concepts; principle of equivalence.- 27.5 Covariant differentiation.- 27.6 Absolute differentiation along a curve.- 27.7 Parallel transport.- 27.8 Orientability.- 27.9 The Riemann tensor, general; Laplacian and d’Alembertian.- 27.10 The Riemann tensor in a Riemannian or pseudo-Riemannian manifold.- 27.11 The Riemann tensor and the intrinsic curvature of a manifold.- 27.12 Flatness and the vanishing of the Riemann tensor.- 27.13 Eisenhart’s analysis of the Stäckel systems.- 28 The Extension of Einstein Manifolds.- 28.1 Special relativity.- 28.2 The Einstein gravitational field equations.- 28.3 The Schwarzschild charts.- 28.4 The Finkelstein extensions of the Schwarzschild charts.- 28.5 The Kruskal extension.- 28.6 Maximal extensions; geodesic completeness.- 28.7 Other extensions of the Schwarzschild manifolds.- 28.8 The Kerr manifolds.- 28.9 The Cauchy problem.- 28.10 Concluding remarks.- 29 Bifurcations in Hydrodynamic Stability Problems.- 29.1 The classical problems of hydrodynamic stability.- 29.2 Examples of bifurcations in hydrodynamics.- 29.3 The Navier-Stokes equations.- 29.4 Hilbert space formulation.- 29.5 The initial-value problem; the semiflow in ?.- 29.6 The normal modes.- 29.7 Reduction to a finite-dimensional dynamical system.- 29.8 Bifurcation to a new steady state.- 29.9 Bifurcation to a periodic orbit.- 29.10 Bifurcation from a periodic orbit to an invariant torus.- 29.11 Subharmonic bifurcation.- Appendix to Chapter 29—Computational details for the invariant torus.- 30 Invariant Manifolds in the Taylor Problem.- 30.1 Survey of the Taylor problem to 1968.- 30.2 Calculation of invariant manifolds.- 30.3 Cylindrical coordinates.- 30.4 The Hilbert space.- 30.5 Separation of variables in cylindrical coordinates.- 30.6 Results to date for the Taylor problem.- Appendix to Chapter 30—The matrices in Eagles’ formulation.- 31 The Early Onset of Turbulence.- 31.1 The Landau-Hopf model.- 31.2 The Hopf example.- 31.3 The Ruelle-Takens model.- 31.4 The co-limit set of a motion.- 31.5 Attractors.- 31.6 The power spectrum for motions in ?n.- 31.7 Almost periodic and aperiodic motions.- 31.8 Lyapounov stability.- 31.9 The Lorenz system; the bifurcations.- 31.10 The Lorenz attractor; general description.- 31.11 The Lorenz attractor; aperiodic motions.- 31.12 Statistics of the mapping f and g.- 31.13 The Lorenz attractor; detailed structure I.- 31.14 The symbols [i, j] of Williams.- 31.15 Prehistories.- 31.16 The Lorenz attractor; detailed structure II.- 31.17 Existence of 1-cells in F.- 31.18 Bifurcation to a strange attractor.- 31.19 The Feigenbaum model.- Appendix to Chapter 31 (Parts A-H)—Generic properties of systems:.- 31.A Spaces of systems.- 31.B Absence of Lebesgue measure in a Hilbert space.- 31.C Generic properties of systems.- 31.D Strongly generic; physical interpretation.- 31.E Peixoto’s theorem.- 31.F Other examples of generic and nongeneric properties.- 31.G Lack of correspondence between genericity and Lebesgue measure 308 31.H Probability and physics.- References.
1997-2024 DolnySlask.com Agencja Internetowa