ISBN-13: 9781447115748 / Angielski / Miękka / 2012 / 394 str.
ISBN-13: 9781447115748 / Angielski / Miękka / 2012 / 394 str.
Abrasive water jet machining was introduced to manufacturing ten years ago and has been increasingly used for treating hard-to-machine and multi-layered materials and as an alternative tool for milling, turning, drilling and polishing. This is the first comprehensive review of the technique, dealing with a broad range of issues including mixing and acceleration processes, material removal mechanisms, process optimization and fluid mechanics. Explanations are given as the book follows the development of an abrasive water jet machining process, from tool generation through to machining results, supervision and control. This methodical journey through the field is marked by drawings, graphs and tables, many of which are being published here for the first time. Though the book is written at an academic level, it focuses very much on practical applications, which reflects the authors' extensive involvement with both laboratory research and industrial practices.
1 Introduction.- 1.2 Classification of High-Speed Fluid Jets.- 1.3 State-of-the-Art Application of the Water-Jet Technique.- 2 Classification and Characterization of Abrasive Materials.- 2.1 Classification and Properties of Abrasive Materials.- 2.1.1 General Classification of Abrasive Materials.- 2.1.2 Global Abrasive-Evaluation Parameter.- 2.2 Abrasive-Material Structure and Hardness.- 2.2.1 Structural Aspects of Abrasive Materials.- 2.2.2 Hardness of Abrasive Materials.- 2.3 Abrasive-Particle Shape Parameters.- 2.3.1 Relative Proportions of Abrasive Particles.- 2.3.2 Geometrical Form of Particles.- 2.4 Abrasive-Particle Size Distribution and Abrasive-Particle Diameter.- 2.4.1 Particle-Size Distribution.- 2.4.1.1 General Definitions.- 2.4.1.2 Sieve Analysis.- 2.4.1.3 Particle-Size Distribution Models.- 2.4.2 ‘Average’ Particle Diameter.- 2.5 Number and Kinetic Energy of Abrasive Particles.- 2.5.1 Abrasive-Particle Number and Frequency.- 2.5.2 Kinetic Energy of Abrasive Particles.- 3 Generation of Abrasive Water Jets.- 3.1 Properties and Structure of High-Speed Water Jets.- 3.1.1 Velocity of High-Speed Water Jets.- 3.1.1.1 Integral Pressure Balance.- 3.1.1.2 Momentum-Transfer Efficiency.- 3.1.2 Kinetic Energy of High-Speed Water Jets.- 3.1.3 Structure and Properties of High-Speed Water Jets.- 3.1.3.1 Structure in Axial Direction.- 3.1.3.2 Structure in Radial Direction.- 3.2 Abrasive Particle — Water Jet Mixing Principles in Injection Systems.- 3.2.1 General Design Principles.- 3.2.2 Internal Design Parameters.- 3.2.2.1 Distance Between Orifice Exit and Focus Entrance.- 3.2.2.2 Distance Between Abrasive Inlet and Focus Entrance.- 3.2.2.3 Alignment Between Orifice and Focus.- 3.2.2.4 Mixing-Chamber Length.- 3.2.3 Alternative Injection-System Designs.- 3.2.3.1 Annular Jet Systems.- 3.2.3.2 Vortex-Flow System.- 3.2.3.3 Multiple Water-Jet System.- 3.3 Abrasive Suction in Injection Systems.- 3.3.1 Pressure Difference for Pneumatic Transport.- 3.3.2 Air-Flow Rate.- 3.3.3 Abrasive-Particle Entry Velocity.- 3.3.4 Internal Focus Pressure-Profile.- 3.4 Abrasive-Particle Acceleration in Injection Systems.- 3.4.1 Simplified Momentum-Transfer Model.- 3.4.1.1 Integral Impulse Balance.- 3.4.1.2 Momentum-Transfer Efficiency.- 3.4.2 Improved Acceleration Model.- 3.4.2.1 Velocity Components.- 3.4.2.2 Force Balance in Axial Direction.- 3.4.2.3 Friction Coefficient and Reynolds-Number.- 3.4.2.4 Force Balance in Radial Direction.- 3.4.2.5 Approximate Solution.- 3.4.2.6 Rigorous Solution.- 3.4.2.7 Numerical Solutions in Axial Direction.- 3.4.2.8 Numerical Solutions in Radial Solution.- 3.4.2.9 Results of Steel-Ball Projection Experiments.- 3.4.3 Regression Model.- 3.5 Abrasive-Particle Fragmentation in Injection Systems.- 3.5.1 Solid-Particle Impact Comminution.- 3.5.1.1 Impact Velocity and Impact Angle.- 3.5.1.2 Fracture Zones During Impact.- 3.5.1.3 Size Effects.- 3.5.1.4 Other Material Properties.- 3.5.2 Abrasive-Particle Size Reduction During Mixing and Acceleration.- 3.5.2.1 General Observations.- 3.5.2.2 The ‘Disintegration-Number’.- 3.5.2.3 Influence of Abrasive-Particle Structure and Properties.- 3.5.2.4 Energy Absorption During Abrasive-Particle Fragmentation.- 3.5.3 Abrasive-Particle Shape Modification During Mixing and Acceleration.- 3.6 Focus Wear in Injection Systems.- 3.6.1 General Features of Focus Wear.- 3.6.2 Focus-Exit Diameter.- 3.6.2.1 Early Observations.- 3.6.2.2 Focus-Wear Rate.- 3.6.2.3 Process-Parameter Influence.- 3.6.2.4 Hardness Influence.- 3.6.3 Other Focus-Wear Features.- 3.6.3.1 General Aspects.- 3.6.3.2 Focus-Mass Loss and Focus-Wear Pattern.- 3.6.3.3 ‘Selective’ Focus Wear.- 3.6.3.4 Eccentricity of Focus-Exit Wear.- 3.6.4 Modeling the Focus-Wear Process.- 3.6.4.1 Phenomenological Focus-Wear Model.- 3.6.4.2 ‘Two-Material’ Focus Concept.- 3.6.4.3 Lifetime-Estimation Model.- 3.7 Generation of Suspension-Abrasive Water Jets.- 3.7.1 General System Features.- 3.7.1.1 System Components.- 3.7.1.2 Bypass-Systems.- 3.7.1.3 Direct-Pumping Systems.- 3.7.2 Abrasive-Particle Acceleration.- 3.7.2.1 Acceleration-Nozzle Design.- 3.7.2.2 Simple Momentum-Transfer Model.- 3.7.2.3 Numerical Simulations.- 3.7.2.4 Finite-Element Modeling.- 3.7.2.5 Acceleration-Nozzle Wear.- 4 Structure and Hydrodynamics of Abrasive Water Jets.- 4.1 General Structure of Injection-Abrasive Water Jets.- 4.1.1 General Structural Features.- 4.1.2 Optical Examinations.- 4.2 Phase Distributions in Injection-Abrasive Water Jets.- 4.2.1 Average Abrasive-Density Distribution.- 4.2.2 Radial-Zone Model.- 4.2.3 Phase Estimation by X-Ray Densitometer.- 4.2.3.1 Water-Phase Distribution.- 4.2.3.2 Abrasive-Phase Distribution.- 4.2.3.3 Air Content.- 4.3 Abrasive-Particle Velocity Distribution in Injection-Abrasive Water Jets.- 4.3.1 Radial Velocity-Profile.- 4.3.2 Turbulence Profile.- 4.3.3 Statistical Abrasive-Particle Velocity Distribution.- 4.4 Structure of Suspension-Abrasive Water Jets.- 5 Material-Removal Mechanisms in Abrasive Water-Jet Machining.- 5.1 Erosion by Single Solid-Particle Impact.- 5.1.1 General Aspects of Solid-Particle Impact.- 5.1.2 Erosion of Ductile-Behaving Materials.- 5.1.2.1 Generalized Erosion Equation.- 5.1.2.2 ‘Micro-Cutting’ Model.- 5.1.2.3 ‘Extended ‘Cutting-Deformation’ Model.- 5.1.2.4 ‘Ploughing-Deformation’ Model.- 5.1.2.5 Low-Cycle Fatigue and Thermal Effects.- 5.1.2.6 Comparison of Models for Ductile-Behaving Materials.- 5.7.5 Erosion of Brittle-Behaving Materials.- 5.1.3.1 Generalized Erosion Equation.- 5.1.3.2 Elastic Model.- 5.1.3.3 Elastic-Plastic Model.- 5.1.3.4 Grain-Ejection Model.- 5.1.3.5 Comparison of Models for Brittle-Behaving Materials.- 5.2 Micro-Mechanisms of Abrasive-Particle Material-Removal in Abrasive Water-Jet Machining.- 5.2.1 Observations on Ductile-Behaving Materials.- 5.2.1.1 SEM-Observations.- 5.2.1.2 Stress Measurements.- 5.2.2 Observations on Composite Materials.- 5.2.2.1 SEM-Observations on Metal-Matrix Composites.- 5.2.2.2 SEM-Observations on Fiber Reinforced Composites.- 5.2.3 Observations on Brittle-Behaving Materials.- 5.2.3.1 SEM-Observations on Polycrystalline Ceramics.- 5.2.3.2 SEM-Observations on Refractory Ceramics.- 5.2.3.3 Acoustic-Emission Measurements on Brittle-Behaving Materials.- 5.2.3.4 Photoelasticity Investigations on Brittle-Behaving Materials.- 5.2.3.5 Microboiling in Ceramics and Metal-Matrix Composites.- 5.2.3.6 Observations on Glass.- 5.3 Material Removal by the High-Speed Water Flow.- 5.3.1 General Observations.- 5.3.2 Observations in Pre-Cracked Materials.- 5.3.2.1 Effect of ‘Water Wedging’.- 5.3.2.2 ‘Transition-Velocity’ Concept.- 5.3.2.3 Pocket Formation in Soft Materials.- 5.4 Macro-Mechanisms of Abrasive Water-Jet Material Removal.- 5.4.1 Some Observations of the Surface Topography.- 5.4.1.1 General Statement.- 5.4.1.2 Surface-Profile Inspections.- 5.4.1.3 Wavelength Decomposition.- 5.4.2 Two-Dimensional Model of the Integral Material Removal.- 5.4.2.1 Traverse-Direction Stages.- 5.4.2.2 Penetration-Direction Stages.- 5.4.2.3 Further Development of the Model.- 5.4.2.4 Step Formation on the Cutting Front.- 5.4.3 Three-Dimensional Model of the Integral Material Removal.- 5.4.3.1 Three-Dimensional Step Formation.- 5.4.3.2 Influence of Machine Vibrations.- 5.4.4 Alternative Models of the Integral Material Removal.- 5.4.1.1 General Comments.- 5.4.1.2 Two-Stage Impact Zone Model.- 5.4.1.3 ‘Three-Zone’ Cutting Front Model.- 5.4.1.4 Energetic Cutting Model.- 5.4.1.5 Numerical Simulation of the Cutting Front.- 5.5 Energy Balance of Abrasive Water-Jet Material Removal.- 5.5.1 General Energy Situation.- 5.5.1.1 Dissipated Energy.- 5.5.1.2 Energy-Dissipation Function.- 5.5.2 Geometrical Energy-Dissipation Model.- 5.5.2.1 Special Solutions of the Energy-Dissipation Function.- 5.5.2.2 Basics for a General Solution.- 5.5.2.3 Striation Geometry.- 5.5.2.4 General Solution of the Energy-Dissipation Function.- 5.5.2.5 Solution for the Relative Depth of Cut.- 5.5.2.6 Local Energy-Dissipation Intensity.- 5.6 Erosion-Debris Generation and Acceleration.- 5.6.1 Properties of Generated Erosion Debris.- 5.6.1.1 Structure, Size and Shape of Erosion Debris.- 5.6.1.2 Contact-Number Estimation.- 5.6.1.3 Erosion-Debris Size Distribution Function.- 5.6.2 Efficiency of Erosion-Debris Generation.- 5.6.2.1 Surface-Based Efficiency Estimation-Model.- 5.6.2.2 Fracture-Based Efficiency Estimation-Model.- 5.6.2.3 Parameter Influence on the Efficiency.- 5.6.3 Erosion-Debris Acceleration.- 5.7 Damping Effects in Abrasive Water-Jet Material Removal.- 5.7.1 Damping During Single Particle-Impact.- 5.7.1.1 Observations in Solid-Particle Erosion.- 5.7.1.2 Damping of Free-Falling Objects.- 5.7.1.3 Critical Particle Velocities for Damping.- 5.7.2 Damping During Abrasive Water-J et Penetration.- 5.7.2.1 Concept of Force Measurements for Damping Estimation.- 5.7.2.2 Results of Force Measurements.- 5.7.2.3 Efficiency Losses due to Damping.- 5.8 Heat Generation During Abrasive Water-Jet Material Removal.- 5.8.1 Sources of Heat Generation.- 5.8.2 Results from Thermocouple Measurements.- 5.8.2.1 General Results.- 5.8.2.2 Process-Parameter Influence.- 5.8.2.3 Local Temperature Distribution.- 5.8.3 Results from Infrared-Thermography Measurements.- 5.8.3.1 General Remarks.- 5.8.3.2 Process-Parameter Influence on Linescans.- 5.8.3.3 Material Isotherms.- 5.8.4 Comparison Between Thermocouple and Infrared-Thermography.- 5.8.5 Modeling of the Heat-Generation Process.- 5.8.5.1 Basic Equations.- 5.8.5.2 Results of the Modeling.- 5.9 Target-Material Property Influence on Material Removal.- 5.9.1 Hardness and Modulus of Fracture.- 5.9.1.1 General Observations.- 5.9.1.2 ‘Two-Stage’ Resistance Approach.- 5.9.2 Concepts of Material Machinability.- 5.9.2.1 The ‘Machinability-Number’.- 5.9.2.2 Other Machinability Concepts.- 5.9.3 Properties of Pre-Cracked Materials.- 5.9.3.1 Stress-Strain Behavior.- 5.9.3.2 Relations to Conventional Testing Procedures.- 5.9.4 Other Material Properties.- 5.9.4.1 Material Porosity.- 5.9.4.2 Thermal-Shock Factor.- 6 Modeling of Abrasive Water Jet Cutting Processes.- 6.1 Introduction.- 6.2 Volume-Displacement Models.- 6.2.1 Volume-Displacement Model for Ductile Materials.- 6.2.3 Volume-Displacement Model for Brittle Materials.- 6.2.2 Generalized Volume-Displacement Model.- 6.3 Energy-Conservation Models.- 6.3.1 Two-Parameter Energy-Conservation Model.- 6.3.2 Regression Energy-Conservation Model.- 6.3.3 Semi-Empirical Energy-Conservation Model.- 6.3.4 Elasto-Plastic Energy-Conservation Model.- 6.3.5 Energy-Conservation Models for Pre-Cracked Materials.- 6.4 Regression Models.- 6.4.1 Multi-Factorial Regression Models.- 6.4.2 Further Regression Models.- 6.4.3 Regression Model for Cutting with Suspension-Abrasive Water Jets.- 6.5 Kinetic Model of the Abrasive Water-Jet Cutting Process.- 6.6 Fuzzy Rule-Based Model of the Abrasive Water-Jet Cutting Process.- 6.7 Numerical Models.- 6.7.1 Numerical Simulations.- 6.7.2 Numerical Process Model.- 7 Process Parameter Optimization.- 7.1 Definition of Process and Target Parameters.- 7.1.1 Process Parameters.- 7.1.2 Target Parameters.- 7.2 Influence of Hydraulic Process Parameters.- 7.2.1 Influence of Pump Pressure.- 7.2.1.1 General Trendss.- 7.2.1.2 Incubation Stage and Threshold Pressure.- 7.2.1.3 Linear Stage and Decreasing Stage.- 7.2.1.4 Optimization Aspects.- 7.2.2 Influence of Water-Orifice Diameter.- 7.2.2.1 General Trends.- 7.2.2.2 Threshold Orifice Diameter.- 7.2.2.3 Optimization Aspects.- 7.3 Influence of Cutting Parameters.- 7.3.1 Influence of Traverse Rate.- 7.3.1.1 General Trends.- 7.3.1.2 Threshold Traverse Rate.- 7.3.1.3 Exposure Time.- 7.3.1.4 Particle-Impact Frequency and Damping Effects.- 7.3.1.5 Influence on the Cutting Rate.- 7.3.2 Influence of Number of Passes.- 7.3.2.1 General Trends.- 7.3.2.2 Multipass Cutting.- 7.3.3 Influence of Standoff Distance.- 7.3.3.1 General Trends.- 7.3.3.2 Special Observations.- 7.3.4 Influence of Impact Angle.- 7.3.4.1 Influence on Ductile-Behaving Materials.- 7.3.4.2 Influence on Brittle-Behaving Materials.- 7.4 Influence of Mixing Parameters.- 7.4.1 Influence of Focus Diameter.- 7.4.1.1 General Trends.- 7.4.1.2 Optimum Focus Diameter.- 4.4.2 Influence of Focus Length.- 7.4.2.1 General Trend.- 7.4.2.2 Optimum Focus Length.- 7.5 Influence of Abrasive Parameters.- 7.5.1 Influence of Abrasive-Mass Flow Rate.- 7.5.1.1 General Trends.- 7.5.1.2 Optimization Aspects.- 7.5.1.3 Influence on Cutting Rate.- 7.5.2 Influence of Abrasive-Particle Diameter.- 7.5.2.1 General Trends.- 7.5.2.2 Optimization Aspects.- 7.5.3 Influence of Abrasive-Particle Size Distribution.- 7.5.4 Influence of Abrasive-Particle Shape.- 7.5.4.1 General Trends.- 7.5.4.2 Influence on Ductile-Behaving Materials.- 7.5.4.3 Influence on Brittle-Behaving Materials.- 7.5.5 Influence of Abrasive-Material Hardness.- 7.5.5.1 General Trends.- 7.5.5.2 Observations in Abrasive Water-Jet Cutting.- 7.5.6 Recycling Capacity of Abrasives.- 7.5.6.1 Early Observations.- 7.5.6.2 Parameter Influence on Disintegration.- 7.5.6.3 Particle-Shape Modification.- 7.5.6.4 Suspension Abrasive Water Jets.- 7.5.6.5 Modelling of Recycling Processes.- 8 Geometry, Topography and Integrity of Abrasive Water-Jet Machined Parts.- 8.1 Cut Geometry and Structure.- 8.1.1 Definition of Cut Geometry Parameters.- 8.1.2 Width on Top of the Cut.- 8.1.2.1 Ductile-Behaving Materials.- 8.1.2.2 Brittle-Behaving Composite Materials.- 8.1.2.3 Ceramics, Glass and Metal-Matrix Compounds.- 8.1.2.4 Models for Top-Width Estimation.- 8.1.3 Width on the Bottom of the Cut.- 8.1.3.1 Ductile-Behaving Materials.- 8.1.3.2 Brittle-Behaving Composite Materials.- 8.1.3.3 Ceramics and Glass.- 8.1.4 Taper of the Cut and Flank Angle.- 8.1.4.1 Ductile-Behaving Materials.- 8.1.4.2 Brittle-Behaving Composite Materials.- 8.1.4.3 Ceramics, Glass and Metal-Matrix Compounds.- 8.1.4.4 Models for Taper Estimation.- 8.1.5 General Cut Profile.- 8.1.5.1 Experimental Results.- 8.1.5.2 General Cut-Geometry Model.- 8.1.6 Initial-Damage Geometry.- 8.1.6.1 General Relations.- 8.1.6.2 Ductile-Behaving Materials.- 8.1.6.3 Brittle-Behaving Composite Materials.- 8.1.6.4 Model for Initial Damage Zone Geometry.- 8.2 Topography of Abrasive Water-Jet Generated Surfaces.- 8.2.1 General Characterzation.- 8.2.1.1 Introductional Aspects.- 8.2.1.2 Static Characterization.- 8.2.1.3 Dynamic Characterization.- 8.2.1.4 Wavelength Decomposition.- 8.2.2 Surface Roughness.- 8.2.2.1 General Relations.- 8.2.2.2 Influence of Hydraulic Parameters.- 8.2.2.3 Influence of Cutting Parameters.- 8.2.2.4 Influence of Mixing Parameters.- 8.2.2.5 Influence of Abrasive Parameters.- 8.2.2.6 Influence of Target-Material Structure.- 8.2.2.7 Models for Roughness Estimation.- 8.2.3 Surface Waviness.- 8.2.3.1 General Relations.- 8.2.3.2 Influence of Process Parameters.- 8.2.3.3 Models for Waviness Estimation.- 8.3 Integrity of Abrasive Water-Jet Generated Surfaces.- 8.3.1 Fatigue Life.- 8.3.2 Surface Hardening.- 8.3.2.1 Hardness Measurements.- 8.3.2.2 Stress Measurements.- 8.3.3 Micro-Structural Aspects.- 8.3.3.1 General Aspects of Alteration.- 8.3.3.2 Surface Cracking in Brittle-Behaving Materials.- 8.3.3.3 Phase Modifications in Ceramics.- 8.3.4 Abrasive-Particle Fragment Embedding.- 8.3.5 Delamination in Composite Materials.- 8.3.6 Burr Formation.- 9 Alternative Machining Operations with Abrasive Water Jet.- 9.1 Capability of Abrasive Water Jets for Alternative Machining.- 9.2 Milling with Abrasive Water Jets.- 9.2.1 Concepts of Abrasive Water-Jet Milling.- 9.2.2 Parameter Optimization in Abrasive Water-Jet Milling.- 9.2.3 Quality of Abrasive Water-Jet Milling.- 9.2.4 Modeling of Abrasive Water-Jet Milling.- 9.2.4.1 General Milling Model.- 9.2.4.2 Milling Model for Fiber-Reinforced Plastics.- 9.2.4.3 Model for Discrete Milling.- 9.2.4.4 Numerical Milling Model.- 9.3 Turning with Abrasive Water Jets.- 9.3.1 Macromechanism of Abrasive Water-Jet Turning.- 9.3.2 Parameter Optimization in Abrasive Water-J et Turning.- 9.3.3 Quality of Abrasive Water-Jet Turning.- 9.3.4 Modeling of Abrasive Water-Jet Turning.- 9.3.4.1 Analytical Turning Model.- 9.3.4.2 Regression Turning Model.- 9.4 Piercing with Abrasive Water Jets.- 9.4.1 Macromechanism of Abrasive Water-Jet Piercing.- 9.4.2 Parameter Optimization in Abrasive Water-J et Piercing.- 9.4.3 Geometry and Quality of Abrasive Water-Jet Pierced Holes.- 9.4.3.1 Hole Geometry.- 9.4.3.2 Hole Quality.- 9.4.4 Modeling of Abrasive Water-Jet Piercing.- 9.4.4.1 Phenomenological Piercing Model.- 9.4.4.2 Analytical Piercing Model.- 9.4.4.3 Regression Piercing Model.- 9.4.4.4 Simulation Model for Piercing.- 9.5 Hole Trepanning and Deep-Hole Drilling with Abrasive Water Jets.- 9.5.1 Hole Trepanning with Abrasive Water Jets.- 9.5.2 Deep-Hole Drilling with Abrasive Water Jets.- 9.6 Polishing with Abrasive Water Jet.- 9.6.1 Abrasive Water-Jet Polishing Concepts.- 9.6.2 Quality Aspects of Abrasive Water-Jet Polishing.- 9.7 Screw-Thread Machining with Abrasive Water Jets.- 10 Control and Supervision of Abrasive Water-Jet Machining Processes.- 10.1 General Aspects of Process Control.- 10.2 Control of the Abrasive-Particle Suction Process.- 10.2.1 General Demands.- 10.2.2 Acoustic Sensing.- 10.2.3 Workpiece Reaction-Force Measurement.- 10.2.4 Vacuum Sensor.- 10.2.5 Actual Abrasive-Mass Flow Rate.- 10.3 Control of Water-Orifice Condition and Wear.- 10.3.1 Optical Jet Inspection.- 10.3.2 Vacuum-Pressure Measurement.- 10.4 Control of Focus Condition and Wear.- 10.4.1 General Comments.- 10.4.2 Direct Tracking.- 10.4.3 Jet-Structure Monitoring.- 10.4.4 Air-Flow Measurements.- 10.4.5 Infrared Thermography.- 10.4.6 Acoustic Sensing.- 10.4.7 Workpiece Reaction-Force Measurement.- 10.4.8 Off-Line Focus-Diameter Measurement.- 10.5 Measurement and Control of Abrasive Water-Jet Velocity.- 10.5.1 Inductive Methods.- 10.5.2 Measurement by Impact Crater Counting.- 10.5.3 Laser-Based Methods.- 10.5.3.1 Laser-2-Focus-Velocimeter.- 10.5.3.2 Laser-Transit-Velocimeter.- 10.5.3.3 Laser-Doppler-Velocimeter.- 10.5.3.4 Laser-Light-Section Procedure Technique.- 10.5.4 Other Optical Methods.- 10.5.4.1 Schlieren-Photography.- 10.5.4.2 High-Speed-Photography.- 10.5.5 Jet Impact-Force Measurements.- 10.6 Measurement and Control of Abrasive Water-Jet Structure.- 10.6.1 Scanning-X-Ray Densitometry.- 10.6.2 Flow-Separation Technique.- 10.7 Control of Material-Removal Processes.- 10.7.1 Acoustic-Emission Technique.- 10.7.1.1 Material-Removal Visualization.- 10.7.1.2 Cutting-Process Visualization and Cutting-Through Control.- 10.7.1.3 Cutting-Efficiency Control.- 10.7.2 Control by Infrared Thermography.- 10.8 Control of Depth of Penetration.- 10.8.1 Acoustic Sensing.- 10.8.2 Acoustic-Emission Technique.- 10.8.3 Workpiece Reaction-Force.- 10.8.4 Supervision and Copntrol of Piercing Processes.- 10.8.4.1 Monitoring by Pressure Sensors.- 10.8.4.2 Monitoring by Acoustic-Emission Technique.- 10.9 Control of the Generated Surface Topography.- 10.9.1 Roughness Control by Static Workpiece Reaction-Force.- 10.9.2 Roughness Control by Dynamic Workpiece Reaction-Force.- 10.9.3 Surface Quality Monitoring by Acoustic-Emission Technique.- 10.10 Expert Systems for Abrasive Water-Jet Machining.- References.
1997-2024 DolnySlask.com Agencja Internetowa