• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2944077]
• Literatura piękna
 [1814251]

  więcej...
• Turystyka
 [70679]
• Informatyka
 [151074]
• Komiksy
 [35590]
• Encyklopedie
 [23169]
• Dziecięca
 [611005]
• Hobby
 [136031]
• AudioBooki
 [1718]
• Literatura faktu
 [225599]
• Muzyka CD
 [379]
• Słowniki
 [2916]
• Inne
 [443741]
• Kalendarze
 [1187]
• Podręczniki
 [166463]
• Poradniki
 [469211]
• Religia
 [506887]
• Czasopisma
 [481]
• Sport
 [61343]
• Sztuka
 [242115]
• CD, DVD, Video
 [3348]
• Technologie
 [219293]
• Zdrowie
 [98602]
• Książkowe Klimaty
 [124]
• Zabawki
 [2385]
• Puzzle, gry
 [3504]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7151]
Kategorie szczegółowe BISAC

Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models

ISBN-13: 9781484268667 / Angielski / Miękka / 2021 / 118 str.

Sayan Putatunda
Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models Putatunda, Sayan 9781484268667 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models

ISBN-13: 9781484268667 / Angielski / Miękka / 2021 / 118 str.

Sayan Putatunda
cena 241,50
(netto: 230,00 VAT:  5%)

Najniższa cena z 30 dni: 231,29
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!
Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Mathematics > Prawdopodobieństwo i statystyka
Computers > Languages - General
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484268667
Rok wydania:
2021
Ilość stron:
118
Waga:
0.20 kg
Wymiary:
23.39 x 15.6 x 0.74
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1:  An Introduction to Streaming Data

Chapter Goal: Introduce the readers to the concept of streaming data, the various challenges associated with it, some of its real-world business applications, various windowing techniques along with the concepts of incremental and online learning algorithms.  This chapter will also help in understanding the concept of model evaluation in case of streaming data and provide and introduction to the Scikit-Multiflow framework in Python.
No of pages- 35
Sub -Topics
1. Streaming data
2. Challenges of streaming data
3. Concept drift
4. Applications of streaming data
5. Windowing techniques
6. Incremental learning and online learning
7. Illustration : Adopting batch learners into incremental learners
8. Introduction to Scikit-Multiflow framework
9. Evaluation of streaming algorithms


Chapter 2: Change Detection
Chapter Goal: Help the readers to understand the various change detection/concept drift detection algorithms and its implementation on various datasets using Scikit-Multiflow.
No of pages : 35
Sub - Topics:  
1. Change detection problem
2. Concept drift detection algorithms
3. ADWIN
4.  DDM
5.  EDDM
6.  Page Hinkley

Chapter 3: Supervised and Unsupervised Learning for Streaming Data
Chapter Goal: Help the readers to understand the various regression and classification (including Ensemble Learning) algorithms for streaming data and its implementation on various datasets using Scikit-Multiflow. Also, discuss some approaches for clustering with streaming data and its implementation using Python.
No of pages: 35
Sub - Topics: 
1. Regression with streaming data
2. Classification with streaming data
3. Ensemble Learning with streaming data
4. Clustering with streaming data

Chapter 4: Other Tools and the Path Forward
Chapter Goal: Introduce the readers to the other open source tools for handling streaming data such as Spark streaming, MOA and more. Also, educate the reader about additional reading for advanced topics within streaming data analysis.
No of pages: 35
Sub - Topics: 
1. Other tools for handling streaming data
1.1.1. Apache Spark
1.1.2. Massive Online Analysis (MOA)
1.1.3. Apache Kafka
2. Active research areas and breakthroughs in streaming data analysis
3. Conclusion

Dr. Sayan Putatunda is an experienced data scientist and researcher. He holds a Ph.D. in Applied Statistics/ Machine Learning from the Indian Institute of Management, Ahmedabad (IIMA) where his research was on streaming data and its applications in the transportation industry. He has a rich experience of working in both senior individual contributor and managerial roles in the data science industry with multiple companies such as Amazon, VMware, Mu Sigma, and more. His research interests are in streaming data, deep learning, machine learning, spatial point processes, and directional statistics. As a researcher, he has multiple publications in top international peer-reviewed journals with reputed publishers. He has presented his work at various reputed international machine learning and statistics conferences. He is also a member of IEEE.



Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. 

You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.

Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.

You will:

  • Understand machine learning with streaming data concepts
  • Review incremental and online learning
  • Develop models for detecting concept drift
  • Explore techniques for classification, regression, and ensemble learning in streaming data contexts
  • Apply best practices for debugging and validating machine learning models in streaming data context
  • Get introduced to other open-source frameworks for handling streaming data.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia