ISBN-13: 9783642644665 / Angielski / Miękka / 2011 / 308 str.
ISBN-13: 9783642644665 / Angielski / Miękka / 2011 / 308 str.
Written for geodesists using computers of modest capacity, the book reviews the latest development in geodetic computation techniques. The aim is to take stock of available data (datums, ellipsoids, units etc.), to focus on applications and to illuminate spatial developments. Topics cover datums and reference systems, geodetic arc distances, different projections and coordinate systems. The material has been specially chosen and covers the practical aspect of geodesy, including the demonstration of global examples. Stressing the how-to-do approach, the book is of interest to students in geodesy, GIS consultants, hydrographers and land surveyors.
1. Preamble.- 1.1 Welcome to the World of Geodesy.- 1.2 Organisation of this Book.- 1.3 Acknowledgements.- 2. BASIC Guidelines and Algorithms.- 2.1 Double-Precision Form for Numeric Constants.- 2.2 Error Messages.- 2.3 Conversion of BASIC Programs.- 2.4 Recasting Algorithms.- 2.4.1 Accuracy and Precision.- 2.4.2 Errors.- 3. Datums and Reference Systems.- 3.1 The Figure of the Earth.- 3.2 Vertical Datum.- 3.2.1 Definition of the Vertical Datum.- 3.3 Linear Units of Measurement.- 3.4 Geodetic Reference Datum.- 3.4.1 Defined Ellipsoids.- 3.4.2 Defining Parameters.- 3.4.2.1 An Era in the Science of Geodesy.- 3.4.2.2 Legal Metres or International Metres.- 3.4.2.3 Parameters and Associated Constants.- 3.4.3 Spheroidal Mapping Equations.- 3.4.4 Parameters and Associated Constants for the WGS84.- 3.5 Geodetic Reference Systems.- 3.5.1 Mercury Datum of 1960.- 3.5.2 World Geodetic System of 1960.- 3.5.3 World Geodetic System of 1966.- 3.5.4 World Geodetic System of 1972.- 3.5.5 World Geodetic System of 1984.- 3.5.5.1 Mathematical Relationship.- 3.5.5.2 Fundamental Geometrical Constants WGS84 and Others — World-wide.- 3.5.5.3 Revision of WGS84.- 3.5.6 Geodetic Reference System of 1980.- 3.5.7 North American Datum of 1983.- 3.5.8 Soviet Geocentric System of 1985.- 3.5.8.1 Fundamental Geometrical Constants SGS85 of the CIS.- 3.6 Space-based Positioning Systems.- 3.6.1 SGS85 to WGS84 Transformations.- 3.6.2 GPS and GLONASS Characteristics.- 3.7 Footnotes.- 3.7.1 Reference Systems.- 3.7.1.1 Reference System Errors.- 3.7.1.2 Geodetic Latitude and Longitude.- 3.7.1.3 Astronomie Latitude and Longitude.- 3.7.2 The Geodetic Datum Problem.- 3.7.2.1 Datum Definition.- 3.7.3 Datum and Ellipsoid.- 3.7.4 Datum as Co-ordinate System.- 3.7.5 Datum as Co-ordinates.- 3.7.6 Overlapping Datums.- 3.7.7 Mixing Co-ordinates.- 3.7.8 Blunder Detection.- 3.7.9 In Summary.- 4. Geodetic Arc Distances.- 4.1 The Great Elliptic Arc.- 4.2 The Normal Section.- 4.3 Geodesics.- 4.3.1 Geodesics up to 20 000 km by Kivioja’s Method.- 4.3.2 Direct Problem.- 4.3.2.1 Geodetic Line — Direct Problem — 1320 km.- 4.3.2.2 Geodetic Line — Direct Problem — 65 km.- 4.3.2.3 Geodetic Line — Direct Problem — 65 km.- 4.3.2.4 Geodetic Line — Direct Problem — 15 000 km.- 4.3.3 Inverse Problem.- 4.3.3.1 Geodetic Line — Inverse Problem — 65 km.- 4.3.3.2 Geodetic Line — Inverse Problem — 1320 km.- 4.3.3.3 Geodetic Line — Inverse Problem — 81 km.- 4.4 Calculation of the Arc of the Meridian.- 4.4.1 Direct Computation.- 4.4.2 Inverse Computation.- 5. Conformal Projections in General.- 5.1 Scope and Terminology.- 5.2 Conversions and Transformations.- 5.3 Symbology.- 5.4 Practice.- 6. Gauss-Krüger Projection.- 6.1 Transverse Mercator Projection System.- 6.1.1 Gauss-Krüger or Transverse Mercator Mapping Equations.- 6.2 Gauss-Krüger Projection Applications.- 6.2.1 Reference and GK-projection Systems of Australia.- 6.2.2 Reference and GK-projection Systems of the People’s Republic of China.- 6.2.3 Reference and GK-projection Systems of the CIS.- 6.2.4 Reference and GK-projection Systems of the Federal Republic of Germany.- 6.2.5 Reference and GK-projection Systems of Great Britain.- 6.2.6 Reference and GK-projection Systems of Ireland.- 6.2.7 Reference and GK-projection Systems of Italy.- 6.2.8 Reference and GK-projection Systems of Norway.- 6.2.9 Reference and SPC Systems of the USA.- 6.2.9.1 SPCS27 - Transverse Mercator - State Alaska Zone 6 - USA.- 6.2.9.2 SPCS27 - Transverse Mercator - The Hawaiian Islands - USA.- 6.2.9.3 SPCS83 - Transverse Mercator - State New Jersey - (New York - East) - USA.- 6.3 The Universal Transverse Mercator Grid System.- 6.3.1 Footnotes About the UTM Grid.- 6.3.2 UTM Grid Reference System of Australia.- 6.3.2.1 Australian Geodetic Datum.- 6.3.2.2 Geocentric Datum of Australia.- 6.3.2.3 Australian Map Grid.- 6.3.2.4 The Geodetic Datum for Australian Offshore Islands and External Territories.- 6.3.3 UTM Grid Reference System of Belgium.- 6.3.4 UTM Grid Reference System of East Africa.- 6.3.5 UTM Grid Reference System of North Africa.- 6.3.6 UTM Grid Reference System of Norway.- 6.4 Round-Trip Errors.- 6.4.1 Latitude and Longitude Round-Trip Errors.- 6.4.2 Easting and Northing Round-Trip Errors.- 7. Lambert’s Conformal Conical Projection.- 7.1 Quadrillage KilomètriqueSystème Lambert.- 7.1.1 Lambert’s Conformal Conical Mapping Equations.- 7.2 Lambert’s Conical Projection Applications.- 7.2.1 Reference and LCC-projection Systems of France.- 7.2.1.1 Lambert I - Zone Nord - France.- 7.2.1.2 Lambert I - Zone Nord - France.- 7.2.1.3 Lambert II - Zone Centre - France.- 7.2.1.4 Lambert III - Zone Sud- France.- 7.2.1.5 Lambert IV - Zone Corse - France.- 7.2.2 Reference and LCC-projection Systems of North Africa.- 7.2.2.1 Lambert’s Conical Projection of Morocco.- 7.2.3 Reference and LCC-projection Systems of Belgium.- 7.2.4 Reference and SPC Systems of the USA.- 7.2.4.1 SPCS27 - Lambert - State Alaska - Zone 10 - USA.- 7.2.4.2 SPCS27 - Lambert - American Samoa - USA.- 7.2.4.3 SPCS83 - Lambert - State Texas Central - USA.- 7.3 Accuracy.- 7.3.1 Latitude and Longitude Round-Trip Errors.- 7.3.2 Easting and Northing Round-Trip Errors.- 8. Oblique Mercator Projection.- 8.1 RSO and HOM Projections.- 8.1.1 Oblique Mercator Mapping Equations.- 8.1.2 Notes on Oblique Mercator.- 8.1.3 Description of the Borneo Rectified Skew Orthomorphic Grid.- 8.2 Oblique Mercator Projection Applications.- 8.2.1 Reference and OM-projection Systems of Borneo.- 8.2.2 Reference and OM-projection Systems of Alaska - USA.- 8.2.2.1 SPCS27 - Oblique Mercator - State Alaska Zone 1 - USA.- 8.2.2.2 SPCS83 - Oblique Mercator - State Alaska Zone 1 - USA.- 8.3 Accuracy.- 8.3.1 Latitude and Longitude Round-Trip Errors.- 8.3.2 Easting and Northing Round-Trip Errors.- 9. Spatial Co-ordinate Calculations.- 9.1 Curvilinear Geodetic Datum Transformation.- 9.1.1 Transformation Equations.- 9.1.2 Differential GPS.- 9.1.3 Similarity Transformations of Italy.- 9.1.3.1 Transformation Parameters of Italy.- 9.1.3.2 WGS84 to IGM1940 - Transformation - Italy.- 9.1.3.3 WGS84 to IGM1983 - Transformation - Italy.- 9.1.3.4 WGS84 to IGM1940 - Transformation - Italy.- 9.1.3.5 WGS84 to Bessel-Genoa - Transformation - Italy.- 9.1.4 Similarity Transformations of Ireland.- 9.1.4.1 Transformation Parameters of Ireland.- 9.1.4.2 Primary Control Stations in Ireland.- 9.1.4.3 Services of Ordnance Survey.- 9.1.5 Similarity Transformations of the Netherlands.- 9.1.5.1 Transformation Parameters of the Netherlands.- 9.1.5.2 Bessel-Amersfoort to WGS84 Transformation - the Netherlands.- 9.1.5.3 Bessel-Amersfoort to WGS84 Transformation - the Netherlands.- 9.1.6 Cartesian Co-ordinates.- 9.1.6.1 Cartesian Co-ordinates - South-West Pacific.- 9.1.6.2 Cartesian Co-ordinates - Switzerland.- 9.2 Accuracy.- 9.2.1 Transformation Round-Trip Errors.- 9.3 Using Bi-linear Interpolation.- 9.3.1 Transformations Between Two Geodetic Datums.- 9.3.2 Bi-linear Interpolation Scheme.- 9.3.3 Transformation from Bessel to ED50 and Vice Versa - the Netherlands.- 9.3.4 Accuracy.- 10. Miscellaneous Co-ordinate Systems.- 10.1 Military Applications.- 10.1.1 Lambert Nord de Guerre - North-East France.- 10.2 Civil Applications.- 10.2.1 Gauss-Schreiber Grid.- 10.2.1.1 Gauss-Schreiber Co-ordinate System 1866 of Hannover.- 10.2.2 Redesigning a Local Co-ordinate System.- 10.2.2.1 Experimental Reference Systems - GK Oregon Tech. - USA.- 10.2.2.2 Experimental Reference Systems - LCC Oregon Tech. - USA.- 10.2.3 Conversion of Co-ordinates Between Projection Zones.- 10.2.3.1 CK42 Conversion from 6° Wide Zone into 3° and 6° Wide Zones - Bulgaria.- 10.2.3.2 CK42 Conversion from 3° Wide Zone into 6° Wide Zone - Bulgaria.- 10.2.4 Conversion of Co-ordinates Between Projection Systems.- 10.2.4.1 SPCS27 - Lambert - Texas North Central - USA.- 10.2.4.2 UTM - Universal Transverse Mercator Grid - USA.- 11. Appendix.- 11.1 The World Geographic Reference System.- 11.2 Some Non-Standard Grid Systems in Current Use.- 11.3 Topographic Mapping of Antarctica.- 11.4 Spatial Databases.- 11.5 Organisation of the International Earth Rotation Service.- 11.5.1 IERS Reference System.- 11.6 List of Acronyms and Abbreviations.- 11.7 Programs.- 11.7.1 ELLIDATA.BAS.- 11.7.2 REFGRS00.BAS.- 11.7.3 BDG00000.BAS.- 11.7.4 GBD00000.BAS.- 11.7.5 GK000000.BAS.- 11.7.6 LCC00000.BAS.- 11.7.7 OM000000.BAS.- 11.7.8 TRM00000.BAS.- 11.7.9 RDED003x.BAS.- 11.7.10 Footnotes on the Programs.- 12. Bibliography and Indices.- 12.1 Index of Subjects.- 12.2 Index of Authors.- 12.3 Bibliography.
Written for geodesists using computers of modest capacity, the book reviews the latest development in geodetic computation techniques. The aim is to take stock of available data (datums, ellipsoids, units etc.), to focus on applications and to illuminate spatial developments. Topics cover datums and reference systems, geodetic arc distances, different projections and coordinate systems. The material has been specially chosen and covers the practical aspect of geodesy, including the demonstration of global examples. Stressing the how-to-do approach, the book is of interest to students in geodesy, GIS consultants, hydrographers and land surveyors.
1997-2025 DolnySlask.com Agencja Internetowa