Basics of Power Systems.- Symmetrical and Unsymmetrical Faults.- Grounding System Parameters.- Soil Resistivity.- Soil Resistivity Measurement.- Measurement of Ground Resistance.- Different Materials for Grounding System.- Substation and Transmission Networks Grounding.
Md. Abdus Salam obtained his PhD in Electrical Engineering, in 2000 from the University Teknologi Malaysia. Currently, he is working as a Faculty member in the Department of Electrical and Electronic Engineering, Faculty of Engineering at the Institut Teknologi Brunei (Our National Engineering and Technology University), Negara Brunei Darussalam. His research interests include power system modelling for on-line control, insulator pollution studies, grounding systems and renewable energy. He has published a large number of referred journal and conference papers. He is a senior member of IEEE, member of IET and working as a reviewer of IEEE Transactions on Power Delivery, IEEE Transactions on Dielectrics and Electrical Insulation, IET Generation, Transmission and Distribution, Journal of Electrostatics, Elsevier Science etc.
Quazi M. Rahman obtained his PhD degree from the University of Calgary, Canada in 2002. Currently, he is serving as a faculty member in the Department of Electrical and Computer Engineering, at the University of Western Ontario, London, Canada. He is a licensed professional engineer in the province of Ontario, Canada and a senior member of the IEEE. He is a contributing author of a number of refereed journals and proceeding papers, and book chapters in the areas of wireless communications. His research interest includes Spread Spectrum and MIMO systems, OFDM systems; channel estimation and detection in the physical layer of wireless mobile, satellite communications and grounding systems. Also, he is involved in the study of software applications.
This book provides electrical and electronic engineering undergraduate and graduate students and trainees with practical information on grounding-system parameters, and on different methods for measuring soil resistivity and ground resistance. It also presents some real-world studies, which enhance the learning experience. It discusses electromagnetic field theories to explain ground resistance modeling using different sizes of electrodes. Furthermore it includes CYME GRD software for simulation of soil resistivity and grounding grid design, and considers some fundamental concepts of power systems to clarify other topics related to the grounding system.