Introduction; 1. Incidences and classical discrete geometry; 2. Basic real algebraic geometry in R^2; 3. Polynomial partitioning; 4. Basic real algebraic geometry in R^d; 5. The joints problem and degree reduction; 6. Polynomial methods in finite fields; 7. The Elekes–Sharir–Guth–Katz framework; 8. Constant-degree polynomial partitioning and incidences in C^2; 9. Lines in R^3; 10. Distinct distances variants; 11. Incidences in R^d; 12. Incidence applications in R^d; 13. Incidences in spaces over finite fields; 14. Algebraic families, dimension counting, and ruled surfaces; Appendix. Preliminaries; References; Index.