ISBN-13: 9781119719601 / Angielski / Twarda / 2021 / 448 str.
ISBN-13: 9781119719601 / Angielski / Twarda / 2021 / 448 str.
List of Contributors xvPreface xix1 Polymer Composites for Electrical Energy Storage 1Yao Zhou1.1 Introduction 11.2 General Considerations 11.3 Effect of Nanofiller Dimension 31.4 Orientation of Nanofillers 71.5 Surface Modification of Nanofillers 111.6 Polymer Composites with Multiple Nanofillers 131.7 Multilayer-structured Polymer Composites 161.8 Conclusion 19References 212 Polymer Composites for Thermal Energy Storage 29Jie Yang, Chang-Ping Feng, Lu Bai, Rui-Ying Bao, Ming-Bo Yang, and Wei Yang2.1 Introduction 292.2 Shape-stabilized Polymeric Phase Change Composites 322.2.1 Micro/Nanoencapsulated Method 332.2.2 Physical Blending 352.2.3 Porous Supporting Scaffolds 362.2.4 Solid-Solid Composite PCMs 372.3 Thermally Conductive Polymeric Phase Change Composites 392.3.1 Metals 402.3.2 Carbon Materials 412.3.3 Ceramics 412.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites 422.4.1 Electro-to-Heat Conversion 422.4.2 Light-to-Heat Conversion 452.4.3 Magnetism-to-Heat Conversion 472.4.4 Heat-to-Electricity Conversion 482.5 Emerging Applications of Polymeric Phase Change Composites 482.5.1 Thermal Management of Electronics 492.5.2 Smart Textiles 502.5.3 Shape Memory Devices 512.6 Conclusions and Outlook 51Acknowledgments 52References 523 Polymer Composites for High-Temperature Applications 63Sen Niu, Lixue Zhu, Qiannan Cai, and Yunhe Zhang3.1 Application of Polymer Composite Materials in High-Temperature Electrical Insulation 633.1.1 High-Temperature-Resistant Electrical Insulating Resin Matrix 633.1.1.1 Silicone Resins 643.1.1.2 Polyimide 643.1.1.3 Polyether Ether Ketone 653.1.1.4 Polybenzimidazole 653.1.1.5 Polyphenylquinoxaline 653.1.1.6 Benzoxazine 663.1.2 Modification of Resin Matrix with Reinforcements 663.1.2.1 Mica 663.1.2.2 Glass Fiber 663.1.2.3 Inorganic Nanoparticles 673.1.3 Modifications in the Thermal Conductivity of Resin Matrix 673.1.3.1 Mechanism of Thermal Conductivity 683.1.3.2 Intrinsic High Thermal Conductivity Insulating Material 683.1.3.3 Filled High Thermal Conductivity Insulating Material 693.2 High-Temperature Applications for Electrical Energy Storage 703.2.1 General Considerations for High-Temperature Dielectrics 703.2.2 High-Temperature-Resistant Polymer Matrix 713.2.3 Polymer Composites for High-Temperature Energy Storage Applications 713.2.4 Surface Modification of Nanocomposite for High-Temperature Applications 723.2.5 Sandwich Structure of Nanoparticles for High-Temperature Applications 753.3 Application of High-Temperature Polymer in Electronic Packaging 773.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design 803.3.1.1 Fluorine-Containing Low Dielectric Constant Polymer 803.3.1.2 Low Dielectric Constant Polymer Material Containing Nonpolar Rigid Bulk Group 813.3.2 High-Temperature-Resistant Low Dielectric Constant Polymer Composite Material 823.3.2.1 Low Dielectric Constant Polyoxometalates/Polymer Composite 833.3.2.2 Low Dielectric Constant POSS/Polymer Composite 853.4 Application of Polymer Composite Materials in the Field of High-Temperature Wave-Transmitting and Wave-Absorbing Electrical Fields 863.4.1 Wave-Transmitting Materials 883.4.1.1 The High-Temperature Resin Matrix 883.4.1.2 Reinforced Materials 893.4.2 Absorbing Material 893.4.2.1 The High-Temperature Resin Matrix 903.4.2.2 Inorganic Filler 903.5 Summary 91References 924 Fire-Retardant Polymer Composites for Electrical Engineering 99Zhi Li, En Tang, and Xue-Meng Cao4.1 Introduction 994.2 Fire-Retardant Cables and Wires 1004.2.1 Fundamental Overview 1004.2.2 Understanding of Fire-Retardant Cables and Wires 1014.2.2.1 Polyethylene Composites 1014.2.2.2 Ethylene-Vinyl Acetate (EVA) Copolymer 1034.2.2.3 Polyvinyl Chloride Composites 1054.2.2.4 Other Polymers 1084.3 Fire-Retardant Polymer Composites for Electrical Equipment 1094.3.1 Fundamental Overview 1094.3.2 Understanding of Fire-Retardant Polymer Composites for Electrical Equipment 1104.3.2.1 HIPS and ABS Composites 1104.3.2.2 PC/ABS Composites 1124.3.2.3 PC Composites 1154.3.2.4 PBT Composites 1164.4 Fire-Retardant Fiber Reinforced Polymer Composites 1174.4.1 Fundamental Overview 1174.4.2 Understanding of Fire-Retardant Fiber Reinforced Polymer Composites 1184.4.2.1 Reinforced PBT and PET Composites 1184.5 Conclusion and Outlook 118References 1195 Polymer Composites for Power Cable Insulation 123Yoitsu Sekiguchi5.1 Introduction 1235.2 Trend in Nanocomposite Materials for Cable Insulation 1255.2.1 Overview 1255.2.2 Polymer Materials as Matrix Resin 1255.2.3 Fillers 1285.2.4 Nanocomposites 1305.2.4.1 XLPE Nanocomposites 1315.2.4.2 PP Nanocomposites 1315.2.4.3 Nanocomposite with Cluster/Cage Molecule 1315.2.4.4 Copolymer and Polymer Blend 1315.3 Factors Influencing Properties 1385.4 Issues in Nanocomposite Insulation Materials Research 1395.5 Understanding Dielectric and Insulation Phenomena 1405.5.1 Electromagnetic Understanding 1405.5.2 Understanding Space Charge Behavior by Q(t) Method 141References 1466 Semi-conductive Polymer Composites for Power Cables 153Zhonglei Li, Boxue Du, Yutong Zhao, and Tao Han6.1 Introduction 1536.1.1 Function of Semi-conductive Composites 1536.1.2 Development of Semi-conductive Composites 1546.2 Conductive Mechanism of Semi-conductive Polymer Composites 1556.2.1 Percolation Theory 1576.2.2 Tunneling Conduction Theory 1576.2.3 Mechanism of Positive Temperature Coefficient 1586.3 Effect of Polymer Matrix on Semi-conductivity 1596.3.1 Thermoset Polymer Matrix 1596.3.2 Thermoplastic Polymer Matrix 1626.3.3 Blended Polymer Matrix 1636.4 Effect of Conductive Fillers on Semi-conductivity 1656.4.1 Carbon Black 1656.4.2 Carbonaceous Fillers with One- and Two-Dimensions 1666.4.3 Secondary Filler for Carbon Black Filled Composites 1676.5 Effect of Semi-conductive Composites on Space Charge Injection 1696.6 Conclusions 172References 1737 Polymer Composites for Electric Stress Control 179Muneaki Kurimoto7.1 Introduction 1797.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress 1797.3 Practical Application of epsilon-FGMs to GIS Spacer 1817.4 Application to Power Apparatus 182References 1888 Composite Materials Used in Outdoor Insulation 191Wang Xilin, Jia Zhidong, and Wang Liming8.1 Introduction 1918.2 Overview of SIR Materials 1928.2.1 RTV Coatings 1938.2.2 Composite Insulators 1958.2.3 Liquid Silicone Rubber (LSR) 1968.2.4 Aging Mechanism and Condition Assessment of SIR Materials 1978.3 New External Insulation Materials 1988.3.1 Anti-icing Semiconductor Materials 1998.3.2 Hydrophobic CEP 2018.4 Summary 202References 2039 Polymer Composites for Embedded Capacitors 207Shuhui Yu, Suibin Luo, Riming Wang, and Rong Sun9.1 Introduction 2079.1.1 Development of Embedded Technology 2079.1.2 Dielectric Materials for Commercial Embedded Capacitors 2109.2 Researches on the Polymer-Based Dielectric Nanocomposites 2139.2.1 Filler Particles 2139.2.2 Epoxy Matrix 2169.2.2.1 Modification to Improve Dielectric Properties 2199.2.2.2 Modification to Improve Mechanical Properties 2219.3 Fabrication Process of Embedded Capacitors 2249.4 Reliability Tested of Embedded Capacitor Materials 2299.5 Conclusions and Perspectives 230References 23010 Polymer Composites for Generators and Motors 235Hirotaka Muto, Takahiro Umemoto, and Takahiro Mabuchi10.1 Introduction 23510.2 Polymer Composite in High-Voltage Rotating Machines 23610.3 Ground Wall Insulation 23710.3.1 Mica/Epoxy Insulation 23710.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism 23810.3.3 Insulation Design and V-t Curve 23910.4 Polymer Nanocomposite for Rotating Machine 24010.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property 24110.4.1.1 PD Resistance 24110.4.1.2 Electrical Treeing Lifetime 24210.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine 24410.4.2.1 Voltage Endurance Test of Void Defect 24510.4.2.2 Voltage Endurance Test in Mica/Epoxy Nanocomposite-Layered Structure 24710.4.2.3 V-t Curves in Coil Bar Model with Mica/Epoxy Nanocomposite Insulation 24810.5 Stress-Grading System of Rotating Machines 25210.5.1 Silicon Carbide Particle-Loaded Nonlinear-Resistive Materials 25210.5.2 End-turn Stress-Grading System of High-Voltage Rotating Machines 253References 25511 Polymer Composite Conductors and Lightning Damage 259Xueling Yao11.1 Lightning Environment and Lightning Damage Threat to Composite-Based Aircraft 25911.1.1 The Lightning Environment 25911.1.1.1 Formation of Lightning 25911.1.2 Lightning Test Environment of Aircrafts 26111.1.2.1 Zone 1 26211.1.2.2 Zone 2 26311.1.2.3 Zone 3 26311.1.2.4 Current Component A - First Return Strike 26411.1.2.5 Current Component Ah - Transition Zone First Return Strike 26411.1.2.6 Current Component B - Intermediate Current 26411.1.2.7 Current Component C - Continuing Current 26411.1.2.8 Component C* - Modified Component C 26411.1.2.9 Current Component D - Subsequent Strike Current 26611.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing 26911.1.4 Application of CFRP Composites in Aircraft 26911.2 The Dynamic Conductive Characteristics of CFRP 27111.2.1 A Review of the Research on the Conductivity of CFRP 27111.2.2 The Testing Methods 27211.2.2.1 Specimens 27211.2.2.2 The Test Fixture 27311.2.2.3 Lightning Impulse Generator and Lightning Waveforms 27411.2.3 The Experimental Results of the Dynamic Impedance of CFRP 27511.2.3.1 The Nondestructive Lightning Current Test 27511.2.3.2 The Applied Lightning Current Impulse and the Response Voltage Impulse 27811.2.3.3 Equivalent Conductivity of CFRP Laminates Under Different Lightning Impulses 28011.2.3.4 Equivalent Conductivity of CFRP Laminates with Different Laminated Structures 28211.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP 28211.2.4.1 The Conduction Path of the CFRP Laminate Under a Lightning Current Impulse 28211.2.4.2 Dynamic Conductance of CFRP Laminate 28411.2.4.3 The Inductive Properties of CFRP Laminates 28611.2.4.4 Equivalent Conductivity of CFRP Laminates Subjected to Lightning Current Impulses with Higher Intensity 28811.3 The Lightning Strike-Induced Damage of CFRP Strike 28911.3.1 Introduction of the Lightning Damage of CFRP 28911.3.2 Single Lightning Strike-Induced Damage 29011.3.2.1 Experimental Setup for Single Lightning Strike Test 29011.3.2.2 Experimental Results of Single Lightning Strike-Induced Damage 29211.3.2.3 Evaluation for Single Lightning Strike-Induced Damage 29711.3.3 Multiple Lightning Strikes-Induced Damage 30011.3.3.1 Experimental Method for Multiple Consecutive Lightning Strike Tests 30011.3.3.2 Experimental Results of Multiple Lightning Damage 30311.3.3.3 Multiple Lightning Damage Areas and Depths of CFRP Laminates 30811.3.3.4 Analysis for Multiple Lightning Damage of CFRP Laminates 30911.3.3.5 Evaluation for Multiple Lightning Damage of CFRP Laminates 31311.4 The Simulation of Lightning Strike-Induced Damage of CFRP 31911.4.1 Overview of Lightning Damage Simulation Researches 31911.4.2 Establishment of the Coupled Thermal-Electrical Model 32111.4.2.1 Finite Element Model 32111.4.2.2 Simulated Lightning Component A 32211.4.2.3 Pyrolysis Degree Calculation 32211.4.2.4 Dynamic Conductive Properties 32211.4.2.5 Pyrolysis-Dependent Material Parameters 32311.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates 32311.4.3.1 Temperature and Pyrolysis Fields 32311.4.3.2 Mechanical Analysis 32511.4.4 Simulated Lightning Damage Results 32511.4.4.1 Numerical Criterion for Lightning Damage 32511.4.4.2 In-Plane Lightning Damage Evaluation 32711.4.4.3 In-Depth Lightning Damage Evaluation 331References 33112 Polymer Composites for Switchgears 339Takahiro Imai12.1 Introduction 33912.2 History of Switchgear 34012.3 Typical Insulators in Switchgears 34212.3.1 Epoxy-based Composite Insulators 34212.3.2 Insulator-Manufacturing Process 34312.3.2.1 Vacuum Casting Method 34412.3.2.2 Automatic Pressure Gelation Method 34412.3.2.3 Vacuum Pressure Impregnation Method 34512.4 Materials for Epoxy-based Composites 34512.4.1 Epoxy Resins 34512.4.2 Hardeners 34612.4.3 Inorganic Fillers and Fibers 34712.4.4 Silane Coupling Agents 34812.4.5 Fabrication of Epoxy-based Composites 34912.5 Properties of Epoxy-based Composites 35112.5.1 Necessary Properties of Epoxy-based Composites for Switchgears 35112.5.2 Resistance to Thermal Stresses 35212.5.2.1 Glass Transition Temperature 35212.5.2.2 Coefficient of Thermal Expansion (CTE) 35412.5.3 Resistances to Electrical Stresses 35612.5.3.1 Short-term Insulation Breakdown 35612.5.3.2 Long-term Insulation Breakdown (V-t Characteristics) 35712.5.3.3 Relative Permittivity and Resistivity 35912.5.4 Resistances to Ambient Stresses 36012.5.4.1 Resistance to SF6 Decomposition Gas 36012.5.4.2 Water Absorption 36112.5.5 Resistances to Mechanical Stresses 36212.5.5.1 Flexural and Tensile Strength 36212.5.5.2 Creep 36312.5.6 International Standards for Evaluation of Composites 36312.6 Advances of Epoxy-based Composites for Switchgear 36512.6.1 Nanocomposites 36512.6.2 High Thermal Conductive Composites 36612.6.3 Biomass Material-Based Composites 36712.6.4 Functionally Graded Materials 36812.6.5 Estimate of Remaining Life of Composites 37012.7 Conclusion 372References 37313 Glass Fiber-Reinforced Polymer Composites for Power Equipment 377Yu Chen13.1 Overview 37713.2 Glass Fiber-Reinforced Polymer Composites 37813.2.1 Fibers 37813.2.1.1 Chemical Description 37813.2.1.2 Classification of Glass Fibers 38013.2.1.3 Properties of Glass Fiber 38013.2.1.4 Glass Fabrics 38013.2.1.5 Advantages and Disadvantages 38113.2.1.6 Common Manufacturing Methods 38313.2.1.7 Applications of Glass Fiber in Various Industries 38413.2.2 Polymers 38613.2.2.1 Epoxy 38613.2.2.2 Polyester (Thermosetting) 38613.2.2.3 Phenolic 38713.2.3 Manufacturing Methods 38813.2.4 Specifications of Several Kinds of GFRP Materials 39313.2.4.1 Rigid Laminated Sheets 39313.2.4.2 Industrial Rigid Round Laminated Rolled Tubes 39413.2.4.3 Insulated Pipe 39413.2.4.4 Insulated Pull Rod 39413.3 Application of Glass Fiber-Reinforced Polymer Composites 39613.3.1 Laminated Sheets 39613.3.2 Composite Long Rod Insulators 39813.3.3 UHV-Insulated Pull Rod for GIS 40013.3.4 Composite Pole 40313.3.5 Aluminum Conductor Composite Core in an Overhead Conductor 40413.3.6 Composite Station Post Insulators 40513.3.7 Composite Hollow Insulators 40713.3.8 Composite Crossarms 407Bibliography 414Index 419
Xingyi Huang, PhD, is Professor and Deputy Director of the Shanghai Key Laboratory of Electrical Insulation and Thermal Aging at the Shanghai Jiao Tong University in China. He is an Associate Editor of IEEE Transactions on Dielectric and Electrical Insulation, as well as an Associate Editor of IEEE High Voltage.Toshikatsu Tanaka, PhD, is Chairman of the IEEJ Committee on New Dielectric Materials. He is Vice President of the Central Research Institute of the Electric Power Industry and is a recipient of the Japanese Ministry of Science and Technology Prize.
1997-2024 DolnySlask.com Agencja Internetowa