• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Physics and Technology for Engineers: Understanding Materials and Sustainability » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Physics and Technology for Engineers: Understanding Materials and Sustainability

ISBN-13: 9783031320835 / Angielski

R. Prasad
Physics and Technology for Engineers: Understanding Materials and Sustainability R. Prasad 9783031320835 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Physics and Technology for Engineers: Understanding Materials and Sustainability

ISBN-13: 9783031320835 / Angielski

R. Prasad
cena 443,82 zł
(netto: 422,69 VAT:  5%)

Najniższa cena z 30 dni: 424,07 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Science > Applied Sciences
Technology & Engineering > Materials Science - General
Science > Physics - Condensed Matter
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783031320835

Contents of

Chapter-1


 


Chapter-1      Engineering Materials, Atomic Structure

and Bounding


Objective


1.1         

Classification of condensed

matter


1.1.1        

Metals


(a )         Ductility


(b)          Malleability


(c)     Different types of metal strengths


(i)                 

Tensile strength


(ii)               

Yield strength


(iii)             

Compressive strength


(iv)             

Impact strength


(v)               

Shear strength


(vi)             

Ultimate strength


(d)           Lustre


(e)           Electrical and thermal conductivities


(f)    

       High melting point of

metals


1.1.2        

Ceramics


1.1.3        

Polymers


(i)                 

Classification based on molecular

forces


(a)    Elastomers


(b)   Fibers


(c)    Resins


(ii)               

Classification based on heat

treatment              


(d)   Thermoplastic polymers


(e)   Thermosetting polymers


(iii)             

Classification based on source


(f)     Natural Polymers


(g)    Semi-synthetic polymers


(h)   Synthetic polymers


(iv)             

Classification based on structure


(i)      Linear polymers


(j)     Branched polymers


(k)    Cross-linked polymers


(v)               

Classification based on mode of

polymerization


(l)      Addition polymers


(m) Condensation polymer


1.1.4        

Composites


(a)  

Polymer matrix composites


(b)  

 Metal matrix composites


(c)   

Ceramic matrix composites (CMC)


1.2              

Atomic structure


1.2.1      Elements of atomic

structure


1.2.2      Arrangement

of electrons in atom


(a)   

Principal quantum number ‘n’


(b)  

Azimuthal quantum number


(c)    

Magnetic quantum number


(d)   

The Magnetic spin quantum number


1.2.3      Shape and orientation of

orbitals


1.2.4      Electron energy level

diagram


1.2.5      Electron configuration

of elements


1.2.6      Aufbau

or building up Principle


RULE-1


RULE-2


RULE-3:  Hund’s rule


1.2.7    Representing electron

configuration


(a)    Orbital notation method


(b)    Orbital diagram method


(c)     Short hand form


1.2.8     Valence shell


1.2.9      Some anomalous electron configurations


 


1.3              

Bonds between atoms and ions


1.3.1      Electronegativity


1.3.2      The Octet Rule


1.3.3      Classification of bonding


(A) Primary

atomic bonds


(i)           Ionic 

or electrovalent bond


(i)                 

Covalent bond


Bond parameters


(a)    Bond length


(b)    Bond angle


(c)     Band order


(d)    Polarity of bond


(e)    Bonding energy


(ii)               

Metallic bond


(B)    Secondary bonds


Electric dipole


(i)                 

Fluctuating dipole bond


(ii)               

Permanent dipole bond


(iii)             

Hydrogen (secondary) bond


 


Short answer questions


Multiple choice questions


Long answer questions


 


 


 


 


 


Contents of

chapter-2


Chapter-2       Electrical

behaviour of condensed matter


Objective


2.1       Introduction  


2.2       Electron

energy band theory


2.3       Insulator


2.4       Semiconductors


2.4.1      Intrinsic semiconductors


            (i)        Purification of natural

silicon


(a)          The trichorosliane method


(b)         Zone refining technique


(c)          Poly crystal to monocrystal


(d)           Monocrystal to wafers


(ii)               

Fermi energy and Fermi level

2.4.2

    Covalent band picture of

intrinsic  semiconductor


2.4.3      Doped or extrinsic

semiconductors


2.4.4      Doping technology


                (i)           Ion

implantation technology


(ii)         Diffusion technology


(iii)             

Doping at monocrystal growth stage


2.4.5      n and p type semiconductors


                (i)        n-type semiconductor


(ii)               

p-type semiconductor


2.4.6      Compensated semiconductor


2.4.7      Degenerate and non-degenerate

semiconductors


2.4.8      Direct and indirect semiconductor


2.4.9      Compound semiconductors


2.4.10    Current

flow in semiconductor


(i)           Drift current


(ii)         Diffusion current


2.4.11    Temperature

dependence of semiconductor resistivity


2.4.12    Theoretical

calculation of carrier concentration in a semiconductor


                (i)           Calculation of Fermi energy at T  0 K


2.4.13    Hall

effect


2.4.14    p-n junction


                (i)           Depletion layer


                (ii)          Biasing of p-n junction diode


(a)      Forward bias


(b)    Reverse bias


2.4.15   Some formulations


Solved examples


2.5       Conductors


2.5.1      Semi

metals and half metals


                (i)           Semi metal or metalloid


                (ii)          Half metal


Solved examples


2.6       Superconductor


2.6.1      Background


             

(i)           Meissner effect


(ii)         Magnetic field trapped in a

superconducting ring


(iii)             

Superconductor

type-I and type-II


(iv)             

Stable levitation


(v)               

High Tc

superconductors


(vi)             

Isotope effect


(vii)            

Cooper pair


2.6.2        

BCS theory of superconductivity


Problems


Short answer questions


Multiple choice questions


Long

answer questions


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Contents of

Chapter -3


Chapter-3   Magnetic materials


Objective


3.1       Introduction


3.2        Electric current and magnetic field


3.3        Magnetic dipole moment


3.4        Magnetic moment of a charged particle

moving in a circular orbit


 

3.4.1    Classical to quantum

mechanics


3.5       Magnetic (dipole) moment of electron


(i)                 

Orbital motion of

electron


(ii)               

Spin motion of

electron


(iii)             

Magnetic moments of nuclear particles


3.6       Magnetic behaviour of solids


    3.6.1 Magnetic induction B

and magnetic field H


3.7       Classification of magnetic materials


    3.7.1 Diamagnetic materials


3.7.1.1  Langevin’s theory of

diamagnetism


    3.7.2 Paramagnetic materials


3.7.2.1  Langevin’s theory for paramagnetism


    3.7.3  Ferromagnetic materials


3.7.3.1  Weiss’s theory of ferromagnetism


(i)                

Exchange

interactions


(ii)               

Spin wave


(iii)             

Saturation

magnetization Msat


(iv)             

Magnetic anisotropy


(v)               

Magnetic hysteresis in

ferromagnetic substances


   3.7.4   Antiferromagnetic and ferrimagnetic materials


3.7.4.1 Ferrimagnetisms


3.8       Permanent magnetic

materials


                Ferrite


                Neodymium-iron-boron

compound


                Magnetic

rubber


Solved example


PROBLEMS


SHORT

ANSWER QUESTIONS


MULTIPLE

CHOICE QUESTIONS


LONG

ANSWER QESTIONS


 


 


 


 


 


Contents

of chapter-4


Chapter-4                     


X-rays, Dual nature of Matter, Failure of Classical Physics and Success

of quantum approach


Objective


4.1       INTRODUCTION


4. 2      Discovery, production and

properties of X-rays


4.2.1

Production of X-rays


4.2.2 Continuous X-rays


4.2.3 Characteristic X-rays


4.2.4 Mosley’s law


4.2.5 X-ray diffraction


4.2.6       

Some applications of X-rays


  (i)    Powder x-ray Diffraction (PXRD)


4.3       Dual nature of matter


4.3.1 Davisson and Germer experiment


(a) Velocity of de Broglie waves


(i) 

Phase velocity


(ii) Group velocity


(b) What makes matter waves


4.4      Some examples

of the failure of classical approach and success of quantum approach


4.4.1  Stability of the atom and the nature of atomic

spectra


4.4.2  Photo electric effect


       (a) Dependence of photoelectric current on frequency of

incident radiation


       (b) Dependence of photoelectric current on the

intensity of incident radiation


                      (c) Dependence of

photoelectric current on the potential difference across the   two plates


       (d) Dependence

of photoelectric current on the frequency of incident light and on the stopping

potential


       (e) Dependence

of cut-off (threshold) frequency on the type of cathode surface


4.4.3   Quantum theory of photoelectric effect


4.4.4 Work function


4.4.5   Residual atom after the emission of photoelectron


4.5   Black body radiations and

their energy distribution


4.5.1 Wien’s displacement law


4.5.2   Failure of Wien’s

distribution law


4.5.3   Rayleigh and Jean’s

distribution law


4.5.4   Failure of Rayleigh Jeans

distribution


4.6      Quantum theory of

blackbody radiations


4.7       Compton scattering of

gamma rays


4.7.1    Compton

wavelength


4.7.2    Compton

scattering by the whole atom


4.7.3   

Photon interactions with matter


4.7.4   Some applications of

Compton scattering


4.8      Specific heat of solids


4.8.1    Dulong Petit law


4.8.2   Obtaining Dulong Petit law on the basis of classical physics


4.8.3   Problems with Dulong Petit law


4.9       Quantum approach to atomic

specific heat of solids


4.9.1    Einstein’s theory for specific heat of solids


4.9.2   Investigating the temperature dependence of Einstein’s equation


4.9.3   Drawbacks of Einstein’s model


4.9.4   Debye theory of atomic specific heat


4.9.5   Debye temperature


SOLVED

EXAMPLES


SHORT ANSWER QUESTIONS


MULTIPLE CHOICE

QUESTIONS


LONG ANSWER QUESTIONS


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


                        Contents of Chapter-5


Chapter-5                             

Introduction to Quantum Mechanics


         


  Objective


5.1       Introduction


5.2       Postulates

of Quantum Mechanics


Postulate-1


5.2.1      What

does wave function represent?


5.2.2      Properties of the

acceptable wave function


5.3       Observables and operators


Postulate-2    


5.4       Time evolution of a quantum mechanical

system


Postulate-3


5.4.1      Schrodinger time

dependent equation


5.4.2      Some properties of

Schrodinger equation


5.5       Time independent Schrodinger equation


5.6         About operators


5.6.1      Null operator


5.6.2      Unity or Identity

operator


5.6.3      Linear operator               


5.6.4      Hermitian conjugate

and Hermitian operator


5.6.5      Anti hermitian

operator


5.6.6      Inverse Operator


5.6.7      Unitary operator


5.6.8      Some

properties of Hermitian operators


5.6.9      Algebra of operators


5.6.10    Operators for some

dynamical variables


Solved examples


5.7       Measurement of a dynamical variable in

quantum mechanics


Postulate-4


5.7.1      Expectation value of a dynamic variable


Solved examples


5.8       Some one- dimensional

problems


5.8.1      Energy states: Bound and Scattering states


5.8.2      Quantum mechanical description of a free particle


5.8.3      Particle in a one-dimensional asymmetric infinite potential

well


5.8.3.1  Eigen function for a particle in an

one-dimensional infinite box             


5.8.3.2  Extension to two- dimensional and

three-dimensional infinite potentials


5.8.4    Potential barrier and

tunnelling


5.8.4.1  Boundary conditions


5.8.4.2  

Transmission coefficient


5.8.4.3   Reflection

Coefficient


5.9         

   Heisenberg uncertainty principle


5.10     Correspondence

principle and Ehrenfest’s theorem


Solved examples


Problems


Short answer

questions


Multiple choice

questions


Long answer

questions


 


Contents

of Chapter-6


Chapter-6                                      QuantumStatistics

                Objective


6.1       Introduction


6.2         Application of quantum statistics

(statistical mechanics) to an assembly of non interacting particles


6.3       Energy

levels, energy states, degeneracy and occupation number


6.3.1      Distinguishable and indistinguishable

particles


6.3.2      Macrostate


6.3.3      Microstates


6.3.4      Time evolution of an assembly


6.3.5      Postulate of equal a prior probability of

all microstates


 


6.4       Quantum statistical probability of a

Macrostate


6.4.1   System properties and average occupation

number


 


6.5       The Bose-Einstein statistical

distribution


 


6.6       The Fermi-Dirac statistical distribution


 


6.7       The Maxwell-Boltzmann statistical

distribution


 


6.8       Relation between entropy and

thermodynamic probability


 


6.9       The distribution function


 


Solved examples


Problems


Short answer questions


Multiple

choice questions


Long answer

questions


 


 


 


 


 


 


 


Contents

of chapter-7


Optical

Fiber Communication


      Objective


7.1 Introduction


7.2 Advantages of

optical fiber communication


7.3 Basics of

optical fiber communication


    7.3.1  Optical fiber materials 


    7.3.2  Frequently used wavelengths in optical

transmission


    7.3.3  Principle of total internal reflection


    7.3.4  Types of fibers


    (a)  Single mode step-index fiber


    (b)  Multi mode step-index fiber


    (c)  Multimode graded-index fiber


  7.3.5    Rays guided through fiber


  7.3.6    Meridional and Skewed Rays


  7.3.7    Acceptance angle


  7.3.8    Numerical aperture (NA)


  7.3.9   

The V parameter


 

7.3.10   Attenuation and Dispersion

of optical signal


   (A)

Attenuation


  

(i) Intrinsic causes of attenuation


  (ii)

Extrinsic causes of attenuation


  (B)

Dispersion


(i)                 

Matertial dispersion


(ii)               

Modal dispersion


(iii)             

Waveguide dispersion


(iv)             

Nonlinear dispersion


7.4

Components of optical fiber network link


       (i)         Optical

transmitter


       

(ii)        Optical connector


       (iii)     

  Fiber cable


      

(iv)        Optical receiver


7.5

Applications of optical fiber transmission


Solved

example


PROBLEMS


SHORT ANSWER QUESTIONS


MULTIPLE CHOICE QUESTIONS


LONG ANSWER QESTIONS


 


 


 


 


 


 


Contents of

chapter-8


Chapter-8                       LASER TECHNOLOGY AND ITS

APPLICATIONS


             Objective


8.1       Introduction


8.2       Electromagnetic radiations


8.3          Interaction of electromagnetic

radiation with matter


(a) Absorption


(b) Spontaneous emission or de-excitation


(c)  Radiationless

de-excitation


8.4       Einstein

prediction of stimulated emission


8.5          Stimulated (or

induced) emission of photons


8.5.1     Population inversion


8.5.2     Essential

requirements for laser action


8.5.3     Pumping


(a) Optical pumping


(b) Electric discharge or excitation by electrons


(c) Inelastic atom-atom collision 


(d) Thermal pumping


(e)Chemical pumping


(f)  Pumping based on direct

conversion of electrical energy into light


8.5.4        

Three and four level

lasing schemes


8.5.5      Optical resonator or

laser cavity


(i)                 

Gain coefficient of the

active medium


(ii)               

Threshold gain

coefficient for lasing


(iii)             

Axial or longitudinal

modes


(iv)             

Transverse modes


8.6       Special characteristics of laser light


(i)                 

Monocromaticity


(a)   

Natural line width


(b)   

Doppler broadening


(c)    

Recoil broadening


(d)   

Energy bands in solid

state lasers


(e)   

Laser groups from a

system


(ii)               

Coherence


(iii)              

Directionality


(iv)              

Irradiance


(v)               

Focusability


      8.7       Classification of laser

sources


(i)                 

According to the

physical state of the active medium


(ii)               

According to the mode of

operation


(iii)             

According to other

properties


8.7.1              Solid state

lasers


(i) Doped insulator rod type lasers


(a) Cr.ruby laser source


(b) Nd.YAG laser source


              (ii) Solid state semiconductor

diode laser source


      8.7.2              Dye (liquid) laser source


      8.7.3              Gas

laser sources


(i)           Atomic gas laser


(ii)          Carbon Dioxide Molecular gas laser


              (iii)        Argon ion laser


     8.7.4                 Excimer Laser


     8.7.5               

Mode locking  


     8.7.6               

Q- switching


8.8       Some

applications of Lasers


(a) Laser holography


              (b) Writing and reading of

digital data on compact disc (CD) using laser beam


              (c) Military/ defence/ armament

applications of laser


(d) Industrial and commercial

applications


(e) Medical applications


SOLVED

EXAMPLES


PROBLEMS


SHORT

ANSWER QUESTIONS


MULTIPLE

CHOICE QUESTIONS


LONG

ANSWER QESTIONS


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Contents

of chapter 9


Nanomaterials


             

Objective


 9.1      Introduction


9.2       Special features of nanomaterials


(i)                 

Large surface area


(ii)               

Colour of light

emitted/absorbed depends on the size of the nano structure


(iii)             

Enhancement  in mechanical properties of nanomaterials


(iv)            

Electronic properties of

nanomaterials


(v)               

Thermal behaviour of

nanostructures


(vi)             

Magnetic behaviour of

nanomaterials


9.3       Technology used for the study of

nanostructures


        (a)       

Scanning tunnelling microscope (STM)


        (b)       

Atomic force microscope (AFM)


        (c)         Transmission electron microscope (TEM)


        (d)        Optical tweezers (OT)


9.4       Techniques of producing nanostructures


    9.4.1  Bottom-up techniques


(i)           Gas phase methods


(a)

Chemical vapour deposition (CVD)


(b)

Plasma arcing


               (ii)         Liquid phase methods


                            

(c) Sol-gel synthesis


       (iii)        Solid and Liquid phase methods


                     (d) Self-Assembly


9.4.2      Top down techniques

of fabricating nanostructures


(i)           Mechanical

milling (MM)


(ii)         Laser ablation


(iii)        Nanolithography

and etching


(iv)          Sputtering


(v)          Electric explosion

of wire


9.5       Carbon

nanotubes


(i) Discovery


(ii) Characteristics of carbon nanotubes


(iii) Applications of carbon nanotubes


(a)   

Electronics


(b)   

Energy storage


(c)    

Electron emitter


(d)   

Material properties


(e)   

Filters         


(f)    

Biomedical applications


(g)   

Others


SHORT ANSWER

QUESTIONS


MULTIPLE CHOICE

QUESTIONS


LONG ANSWER QUESTIONS


 


 


 


Contents of chapter-10


Chapter-10             Sustainability

and Sustainable energy options


Objective


10.1     Introduction


10.2     Social sustainability


10.3        

Economical sustainability


10.4        

    Environmental

sustainability


10.4.1                   Atmosphere


(i)                 

Greenhouse effect


(ii)               

Sources of greenhouse

gases


10.4.2    Mechanism of trapping

heat by greenhouse gases


10.4.3    Global greenhouse gas

emission by human activities


(a) 

Carbon dioxide gas CO2


(b)  Methane CH4


(c)  Nitrous oxide N2O 


(d)  Fluorinated gases F-gases


10.5     Global warming


10.5.1    The carbon footprint


10.5.2    Reducing and

off-setting carbon footprints


10.6     Projections on average temperature rise of

1.50C above preindustrial levels


10.7     United

Nation’s efforts


10.7.1    Outlook Scenarios: Computer model based scenarios

prepared by IEA


10.8     Sustainability of land mass


10.9     Sustainability of water bodies


10.10.1 Sustainability of river and other water systems


10.10   Some efforts for improving the sustainability

of environment


10.10.1                A unique

fight against climate change; the ice stupa or artificial glacier


10.11   Sustainable energy


10.11.1 Units of energy


10.11.2 Primary energy


10.11.3 Global energy

production, an overview


10.11.4 Electricity; the most

convenient form of energy


10.11.5 Cost of electricity by

source: Cost metrics


10.11.6 Energy densities

associated with prevalent energy sources


10.11.7 Problem with present

energy mix


10.12   Some clean and sustainable sources


10.12.1 Hydrogen as an

alternative source of energy


10.13   Hydrogen fuel cell


(a)    Polymer

Electrolyte Membrane (PEM) hydrogen fuel cell


(b)    Alkaline

fuel cells (AFCs)


(c)     Phosphoric

Acid Fuel Cells (PAFCs)


(d)   

Molten Carbonate Fuel Cells (MCFCs)


(e)   

Direct Methanol Fuel Cells (DMFCs)     


(f)    

Solid Oxide Fuel Cells

(SOFCs)


(g)   

Reversible Fuel Cells


10.14   Nuclear Energy


10.14.1 Drawbacks of fission

reactor


10.14.2 Plus points of fission

reactor


10.14.3                Accelerator driven energy

amplifier


10.15   Terrain dependent renewable energy sources


10.15.1 Geothermal energy


10.15.2 Hydroelectric energy


         (a)  Advantages


          (b)  Disadvantages


10.16   Wind energy


10.17   Solar energy


10.17.1 Solar thermal


10.17.2 Solar Photo Voltaic

(PV) Technology


10.18   Energy from ocean


10.18.1 Tidal energy


10.18.2 Ocean thermal energy


10.19   Portable sources of sustainable energy


10.19.1 Lithium ion battery


10.19.2 Super capacitor


Short answer

questions


Multiple choice

questions


Long answer

questions


 

R. Prasad is an emeritus professor of physics, formerly Dean of the Faculty of Science and Chairman of the Department of Physics, Aligarh Muslim University (AMU), India. He has more than 40 years of experience teaching nuclear physics, thermal physics, and electronics to upper-level university students. He has supervised around a dozen Ph.D thesises and has published more than 100 peer-reviewed research papers in renowned international journals and is author of several books spanning the disciplines of classical, quantum, thermal and nuclear physics.

This textbook covers the physics of engineering materials and the latest technologies used in modern engineering projects. It has been designed for use as a reference book and course material for undergraduate engineering students. The book was born out of the need for a comprehensive, balanced, and up-to-date guide for teaching physics to beginning undergraduate engineering students and creating examination papers for technical boards and institutes. The text is divided into ten chapters, each with its specific objectives and features. The topics covered include the classification of engineering materials, atomic structure, electrical and magnetic behavior of solids, quantum mechanics, laser technology, nanomaterials, and sustainable development.

Authored by a physicist with over 40 years of teaching experience, this richly-illustrated textbook features an abundance of self-assessment questions, solved examples, and a variety of chapter-end questions with detailed answers. The textbook starts from the very basics and is developed to the desired level, thus making it ideal as standalone course material.




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia