ISBN-13: 9783031215711 / Angielski / Twarda / 2023 / 588 str.
ISBN-13: 9783031215711 / Angielski / Twarda / 2023 / 588 str.
This book presents 50 selected peer-reviewed contributions from the 10th Anniversary International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2021-2022 (23-27 May, 2022, Divnomorsk, Russia), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in computational materials science methods and algorithms (in particular, finite-element and finite-difference modelling) applied to various technological, mechanical, and physical problems. The presented results are important for ongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to promising devices with higher accuracy, increased longevity, and greater potential to work effectively under critical temperatures, high pressure, and in aggressive environments.
This book presents 50 selected peer-reviewed contributions from the 10th Anniversary International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2021-2022 (23-27 May, 2022, Divnomorsk, Russia), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in computational materials science methods and algorithms (in particular, finite-element and finite-difference modelling) applied to various technological, mechanical, and physical problems. The presented results are important for ongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to promising devices with higher accuracy, increased longevity, and greater potential to work effectively under critical temperatures, high pressure, and in aggressive environments.