PART ONE Introduction: technologies, issues, and applications 1. An introduction to space photovoltaics: technologies, issues, and missions 2. Space solar arrays and spacecraft charging 3. Air mass zero (AM0) studies and solar cell calibration 4. Space applications of III-V single- and multijunction solar cells 5. Perovskite solar cells: background and prospects for space power applications 6. Photovoltaics and nuclear energy conversion for space power: background and issues
PART TWO Materials: focus on new technologies and advanced processing 7. Perovskite solar cells on the horizon for space power systems 8. Thermophotovoltaic energy conversion in space 9. Thin-film materials for space power applications 10. Inverted lattice-matched GaInP/GaAs/GaInNAsSb triple-junction solar cells: epitaxial lift-off thin-film devices and potential space applications 11. Summary of the design principles of betavoltaics and space applications
PART THREE Near earth and deep-space missions 12. Solar array designs for deep space science missions 13. Lunar science based on Apollo solar cell measurements 14. Space photovoltaics for extreme high-temperature missions 15. Space photovoltaic concentrators for outer planet and near-Sun missions using ultralight Fresnel lenses 16. Technological relevance and photovoltaic production potential of high-quality silica deposits on Mars 17. Space nuclear power: radioisotopes, technologies, and the future