ISBN-13: 9783540413448 / Angielski / Twarda / 2001 / 334 str.
ISBN-13: 9783540413448 / Angielski / Twarda / 2001 / 334 str.
Provides a comprehensive look at the application of photonic approaches to the problem of analog-to-digital conversion. It looks into the progress made to date, discusses present research, and presents a glimpse of potential future technologies.
From the reviews of the first edition:
"This book is intended to serve as a resource for scientists, engineers, and students interested in performance characteristics and measures of A/D converters, classical A/D conversion techniques, and photonic approaches to A/D conversion. ... The book is well organized and the text easily understandable. ... It is a book which should be available in any University library." (D.H. Miller, Optik, Vol. 117, 2006)
"The book has a readable style unlike others. ... The book starts off with a simple to read introduction. ... It would be useful to people who already had some knowledge in the field and would like an overview, such as an academic wishing to form a new course." (Justin Blows, The Physicist, Vol. 38 (5), 2001)
1. Introduction.- 1.1 The Role of A/D Conversion.- 1.2 Key Technological Challenges.- 1.3 Motivation for Photonic A/D Approaches.- 1.4 Organization of this Book.- 2. Performance Characteristics of Analog-to-Digital Converters.- 2.1 A/D Converter Characteristics.- 2.2 Sampling and Conversion Rate Characteristics.- 2.2.1 Sampling Rate.- 2.2.2 Conversion Rate.- 2.3 Performance Measures.- 2.3.1 Resolution.- 2.3.2 Dynamic Range, SQNR, and SNR Performance Measures..- 2.3.3 Spur-Free Dynamic Range.- 2.4 Performance Degradations.- 2.4.1 Two-Tone Intermodulation Distortion.- 2.4.2 Differential Nonlinearity.- 2.4.3 Integral Nonlinearity.- 2.4.4 Comparator Hysteresis.- 2.4.5 Thermal Noise.- 2.16 Aperture Jitter.- 2.4.7 Comparator Ambiguity.- 2.4.8 Observations.- Summary.- 3. Approaches to Analog-to-Digital Conversion.- 3.1 A/D Converter Coding Schemes.- 3.1.1 Thermometer Coding Scheme.- 3.1.2 Gray Code Coding Scheme.- 3.1.3 Circular Coding Scheme.- 3.2 Nyquist-Rate Converter Architectures.- 3.2.1 Fully Parallel or Flash A/D Conversion.- 3.2.2 Subranging A/D Conversion.- 3.2.3 Folding Architectures.- 3.2.4 Other Parallel Architectures.- 3.2.5 Neural Network Approach to A/D Conversion..- 3.2.6 Full-Search A/D Conversion.- 3.2.7 Successive Approximation A/D Conversion.- 3.3 Oversampled A/D Conversion.- 3.3.1 The Modulator.- 3.3.2 Operation.- 3.3.3 The Digital Postprocessor.- 3.3.4 Oversampled A/D Performance.- 3.4 Parallel Oversampling A/D Conversion.- Summary.- 4. Photonic Devices for Analog-to-Digital Conversion.- 4.1 Mach—Zehnder Interferometers.- 4.2 Optical Waveguide Switches.- 4.2.1 Directional Coupler Waveguide Switches.- 4.2.2 Reversed ?? Directional Coupler..- 4.2.3 Digital Optical Waveguide Switches.- 4.3 Acousto-Optic Devices.- 4.4 Multiple Quantum Well Devices.- 4.4.1 Optical Bistability.- 4.4.2 Optical Subtraction.- 4.4.3 Switching Speed and Energy Requirements.- 4.5 Smart Pixel Technology.- 4.5.1 Monolithic Integration.- 4.5.2 Direct Epitaxy.- 4.5.3 Hybrid Integration.- Summary.- 5. Nyquist-Rate Photonic Analog-to-Digital Conversion.- 5.1 Electro-Optic A/D Conversion Based on a Mach—Zehnder Interferometer.- 5.2 Optical Folding-Flash A/D Converter.- 5.3 Matrix-Multiplication and Beam Deflection.- 5.4 Other Approaches to Photonic A/D Conversion.- Summary.- 6. Oversampled Photonic Analog-to-Digital Conversion.- 6.1 Oversampling Photonic A/D Conversion.- 6.2 Optical Oversampled Modulators.- 6.2.1 The Interferometric Modulator.- 6.2.2 The Noninterferometric Modulator.- 6.3 The Digital Postprocessor.- 6.3.1 Electronic Postprocessing.- 6.3.2 Optoelectronic Postprocessing.- 6.3.3 Observations.- 6.4 Performance Analysis.- 6.4.1 Linear Arithmetic Errors.- 6.4.2 Quantization Noise Spectra.- 6.4.3 Cascade Error Tolerances..- 6.5 Experimental Proof-of-Concept Photonic Modulator Demonstration.- 6.5.1 Noninterferometric Optical Subtraction.- 6.5.2 Experimental Photonic First-Order Oversampled Modulator.- Summary.- 7. Low Resolution, Two-Dimensional Analog-to-Digital Conversion: Digital Image Halftoning.- 7.1 Introduction.- 7.2 Approaches to Halftoning.- 7.3 The Error Diffusion Algorithm.- 7.4 Neural Network Formalism.- 7.4.1 The Hopfield-Type Neural Network.- 7.4.2 Observations.- 7.5 The Error Diffusion Neural Network.- 7.5.1 The Error Diffusion Filter.- 7.5.2 Observations.- 7.6 Quantitative Performance Metrics.- 7.6.1 Power Spectrum Estimation.- 7.6.2 Radially Averaged Power Spectra and Anisotropy.- 7.7 Performance Analysis.- 7.7.1 Floyd—Steinberg Performance Analysis.- 7.7.2 Symmetric Jarvis Performance Analysis.- 7.7.3 Error Diffusion Neural Network Performance Analysis.- 7.8 Extensions to Color.- Summary.- 8. A Photonic-Based Error Diffusion Neural Network.- 8.1 First-Generation CMOS-SEED Error Diffusion Neural Array.- 8.2 Second-Generation CMOS-SEED Error Diffusion Neural Array.- 8.2.1 Detailed Circuit Description.- 8.2.2 Modeling and Simulation.- 8.2.3 Experimental Performance..- 8.2.4 Observations.- 8.3 OPTOCHIP: A 2-D Neural Array Employing Epitaxy-on-Electronics.- 8.3.1 The OPTOCHIP Project.- 8.3.2 Description of Device Architecture.- 8.3.3 Observations.- 8.4 Extensions: A Photonic Error Diffusion Filter.- 8.4.1 Design of the Diffractive Optical Filter.- 8.4.2 Fabrication Error Analysis..- 8.4.3 Experimental Characterization.- 8.4.4 Impact of Fabrication Errors on Halftoning Performance.- Summary.- 9. Photonic A/D Conversion Based on a Fully Connected Distributed Mesh Feedback Architecture.- 9.1 Temporal and Spatial Error Diffusion.- 9.1.1 Spectral Noise Shaping Duality.- 9.1.2 Postprocessing Duality.- 9.1.3 Limit Cycle Oscillation Duality.- 9.1.4 Observations.- 9.2 Spatially Distributed Oversampled A/D Conversion..- 9.3 A 2-D Fully Connected Distributed Mesh Feedback Architecture.- 9.3.1 Mismatch Effects in the Fully Connected Distributed Mesh Feedback Architecture.- 9.4 A/D Conversion Using Spatial Oversampling and Error Diffusion.- 9.4.1 Temporal-to-Spatial Conversion.- 9.4.2 The Two-Dimensional Error Diffusion Neural Network.- 9.4.3 The Postprocessor.- 9.4.4 Spectral Noise Shaping.- 9.4.5 Observations.- 9.5 Three-Dimensional Extensions.- 9.5.1 Space—Time Processing Architectures.- Summary.- 10. Trends in Photonic Analog-to-Digital Conversion.- 10.1 Time-Interleaving A/D Converter Architectures.- 10.1.1 Understanding Time-Interleaved Architectures.- 10.1.2 Mismatch Effects in Time-Interleaved Architectures.- 10.1.3 Block Filter Description of Time-Interleaving.- 10.2 Photonic Channelized A/D Architectures.- 10.2.1 Optical Time-Division Demultiplexing Architectures.- 10.2.2 Wavelength Channelization Architectures.- 10.3 Time-Stretching Using Dispersive Optical Elements.- 10.4 Ultra-Fast Laser Sources with Low Jitter.- 10.5 Novel Optical Sampling Techniques.- 10.6 Broadband Optical Modulators and Switches.- Summary.- References.
Photonic-based A/D conversion has received and continues to receive considerable attention as an alternative approach to providing enhanced resolution and speed in high-performance applications. Some of the potential advantages of using pho- tonic technologies are high-speed clocking, broadband sam- pling, reduced mutual interference of signals, and compati- bility with existing photonic-based systems. This book pro- vides a comprehensive look at the application of photonic devices and architectures to the problem of A/D conversion. It includes a complete description of A/D converter performance characteristics, the various approaches to A/D conversion, and an introduction to several photonic devices used in photonic A/D converters, and it includes a detailed treatment of the application of both temporal and spatial oversampling techniques to photonic A/D conversion. It shows progress made, discusses current research, and provides a glimpse of several promising future architecutres and technologies.
1997-2025 DolnySlask.com Agencja Internetowa