


ISBN-13: 9781405199605 / Angielski / Miękka / 2021 / 432 str.
PrefaceAcknowledgements1. Introduction1.1. The aim and format of the book1.2. Background1.3. What is in this book1.4. What is not in this book1.5. Key terms and concepts1.5.1. Petroleum1.5.2. The source1.5.3. The seal1.5.4. The trap1.5.5. The reservoir1.5.6. The timing of petroleum migration1.5.7. Porous rock and porosity1.5.8. Permeable rock and permeability1.5.9. Relative permeability1.5.10. Net to gross and net pay1.5.11. Water saturation1.5.12. Formation volume factor1.5.13. The gas to oil ratio1.5.14. Timescales1.5.15. The units used in this book1.6. The chemistry of petroleum1.6.1. Alkanes (paraffins)1.6.2. Naphthenes (cycloalkenes)1.6.3. Aromatics1.6.4. Asphaltenes1.7. Geoscience and the value chain1.7.1. Exploration (chapters 3 & 4)1.7.2. Appraisal (see chapter 5)1.7.3. Development (see chapter 6)1.7.4. Production (see chapter 6)1.7.5. Reserves additions and reserves growth (see chapter 6)1.7.6. Field abandonment and reactivation (see chapter 6)1.7.7. Gas storage (see chapter 7)1.7.8. Unconventional petroleum (see chapter 7)1.8. Geoscience activity1.9. Oil, gas, and geoscientists -- a global resource!2. Tools2.1. Introduction2.2. Satellite images and other remote sensing data2.2.1. Introduction2.2.2. Satellite images2.2.3. Gravimetric data2.2.4. Magnetic data2.2.5. Electromagnetic surveys2.3. Seismic data2.3.1. Introduction2.3.2. The seismic method2.3.3. Seismic acquisition2.3.4. Seismic processing2.3.5. Seismic interpretation2.4. Wireline log data2.4.1. Introduction2.4.2. Rock tools2.4.3. Seismic enhancement2.4.4. Porosity and permeability tools2.4.5. Fluid tools2.4.6. Pressure tool2.5. Core and cuttings2.5.1. Introduction2.5.2. Conventional core analysis (porosity and permeability)2.5.3. Core logging2.5.4. Petrography2.5.5. Geochemistry2.5.6. Biostratigraphy2.6. Fluid samples from wells2.6.1. Introduction2.6.2. The sampling of fluids2.6.3. Petroleum2.6.4. Water2.7. Outcrop data2.7.1. Introduction2.7.2. Maps2.7.3. Reservoir analogs2.7.4. Rock sampling and analysis2.8. Seepage of petroleum3. Frontier exploration3.1. Introduction3.2. Acquisition of acreage3.2.1. Early access to acreage3.2.2. The licensing process3.2.3. License areas3.2.4. Farm-ins, farm-outs, and other deals3.3. Direct petroleum indicators3.3.1. Introduction3.3.2. Petroleum leakage and seepage3.3.3. The identification of petroleum on seismic data3.4. Basin types3.4.1. Introduction3.4.2. Extensional basins, generated by divergent plate motion3.4.3. Basins generated during convergent plate motion3.4.4. Strike-slip basins3.5. Basin histories3.5.1. Introduction3.5.2. Subsidence3.5.3. Sediment supply3.5.4. Burial history3.5.5. Thermal history3.5.6. Uplift3.5.7. Pressure history3.5.8. Integrated basin modelling3.6. Stratigraphy3.6.1. Introduction3.6.2. Chronostratigraphy3.6.3. Biostratigraphy3.6.4. Lithostratigraphy3.6.5. Seismic stratigraphy3.6.6. Sequence stratigraphy3.6.7. Chemostratigraphy and magnetostratigraphy3.6.8. Stratigraphic tests3.7. Source rock3.7.1. Introduction3.7.2. The origin of petroleum from living organisms3.7.3. Kerogen3.7.4. Maturation of source rocks: kerogen to oil to gasCase histories3.8. Jubilee Field, Ghana, West Africa3.8.1. Introduction3.8.2. Basin setting3.8.3. Pre-drill assessment3.8.4. Jubilee field3.8.5. Implications for West African and South American margins3.9. Johan Sverdrup Oilfield, Norwegian North Sea3.9.1. Introduction3.9.2. Location3.9.3. Early exploration history3.9.4. Renewed interest3.9.5. Major discovery3.9.6. Petroleum geology3.9.7. Learning4. Exploration and exploitation4.1. Introduction4.2. The seal4.2.1. Introduction4.2.2. The membrane seal4.2.3. The hydraulic seal4.2.4. Faults4.2.5. Trap fill4.2.6. The pressure seal4.3. The reservoir4.3.1. Introduction4.3.2. Intrinsic properties4.3.3. Reservoir lithologies4.3.4. The reservoir: sandstone depositional systems4.3.5. The reservoir: limestone and dolomite4.3.6. Fractured reservoirs4.4. Migration4.4.1. Introduction4.4.2. Primary migration4.4.3. Secondary migration4.4.4. Tertiary migration4.5. The trap4.5.1. Introduction4.5.2. Migration and trap formation4.5.3. Structural traps4.5.4. Stratigraphic traps4.5.5. Hydrodynamic traps4.6. Play and play fairway4.6.1. Play4.6.2. Play fairway4.7. Lead and prospect4.7.1. Introduction4.7.2. Lead, prospect and prospect evaluation4.7.3. The prospect inventory4.7.4. Well prognosis4.7.5. Failure analysis4.8. Yet to find4.8.1. Introduction4.8.2. Areal richness and prospect summation4.8.3. Pool size distribution4.8.4. Creaming curves and destruction of value4.9. Risk and uncertainty4.9.1. Introduction4.9.2. Risk4.9.3. UncertaintyCase histories4.10. Thunder Horse Field, Gulf of Mexico, USA4.10.1. Introduction4.10.2. Geology4.10.3. Deep water, sub-salt exploration4.10.4. Discovery, appraisal and field start-up4.11. Clyde Field UK North Sea4.11.1. Introduction4.11.2. Great expectations4.11.3. Reality dawns4.11.4. A change of owner5. Appraisal5.1. Introduction5.2. The trap envelope5.2.1. Depth conversion5.2.2. Mapping surfaces and faults5.2.3. Spill points5.3. Fluid distribution and contacts5.3.1. Fluid contacts and transition zones5.3.2. Intra-field variations in petroleum composition5.3.3. Intra-field variations in water composition5.4. Field segmentation5.4.1. Introduction5.4.2. Barriers to lateral flow5.4.3. Barriers to vertical flow5.4.4. Identification of flow barriers5.5. Reservoir property distribution5.5.1. Introduction5.5.2. Lithofacies and lithotypes5.5.3. Reservoir body geometry5.5.4. Reservoir correlation5.6. Reservoir quality5.6.1. Introduction5.6.2. More intrinsic reservoir properties5.6.3. Controls on reservoir quality5.6.4. Compaction and cementation in sandstones5.6.5. Compaction and cementation kin limestones5.7. Reservoir description from seismic data5.7.1. Introduction5.7.2. Lithology description5.7.3. Porosity determination5.7.4. Lateral variations and reservoir heterogeneity5.7.5. Reservoir correlation5.7.6. Identification of fluid types and contacts5.8. Petroleum in place, reservoir models and reserves5.8.1. Introduction5.8.2. Petroleum in place5.8.3. Geologic models5.8.4. Reservoir models5.8.5. ReservesCase histories5.9. Kadenwari Field, Pakistan5.9.1. Introduction5.9.2. Re-evaluation of seismic data over Kadenwari5.10. Pedernales Field, Venezuela5.10.1. Introduction5.10.2. Geology of the area5.10.3. History of exploration and production5.10.4. Field reactivation, 1990s6. Development and production6.1. Introduction6.2. Well planning and execution6.2.1. Facilities location and well numbers6.2.2. Well geometries6.2.3. Well types6.2.4. Drilling hazards6.2.5. Well completion and stimulation6.2.6. Formation damage6.2.7. Well logging and testing6.3. Reservoir management6.3.1. Reservoir description from production data6.3.2. Reservoir visualisation6.3.3. Time lapse seismic6.3.4. Managing decline and abandonment6.4. Reserves revisions, additions and field reactivation6.4.1. Introduction6.4.2. Reserves revisions6.4.3. Reserves additions6.4.4. Field rehabilitation and reactivationCase Histories6.5. Thistle Field, North Sea - improving late field life oil production6.5.1. Introduction6.5.2. Field production profiles6.5.3. Water cut and ultimate oil recovery6.5.4. Voidage replacement, pressure maintenance and sweep6.5.5. Conclusions6.6. Ardmore field, UKCS6.6.1. Introduction6.6.2. Location and history6.6.3. Structure, and stratigraphy6.6.4. Reservoirs6.6.5. Source6.6.6. STOIIP & reserves6.6.7. Ardmore development and production6.6.8. Conclusions6.6.9. Postscript7. Unconventional petroleum, gas storage, carbon storage & secondary products7.1. Introduction7.2. Unconventional gas7.2.1. Tight gas reservoirs7.2.2. Shale gas7.2.3. Low saturation gas7.2.4. Shallow gas7.2.5. Basin centre gas7.2.6. Gas hydrates7.2.7. Coal bed methane7.2.8. Coal mine methane7.3. Unconventional oil7.3.1. Heavy oil and tar sand7.3.2. Shale oil & oil shale7.4. Underground coal gasification7.5. Gas storage7.6. Carbon storage7.7. Heat, helium & other secondary products7.7.1. Heat recovery7.7.2. Lithium and other solutes7.7.3. HeliumCase histories7.8. Dunlin Field, UK North Sea, opportunities for power generation from unconventional gas and/or co-produced water7.8.1. Introduction7.8.2. Deep (shale) gas7.8.3. Shallow gas7.8.4. Co-produced hot water7.9. Clipper South Field, UK North Sea, development of a tight gas field7.9.1. Introduction7.9.2. Re-evaluation of the field7.9.3. Analysis of well test dataReferencesIndex
JON G. GLUYAS is Ørsted/Ikon Chair in Geoenergy, Carbon Capture and Storage in the Department of Earth Sciences, Durham University, UK, and Executive Director of Durham Energy Institute.RICHARD E. SWARBRICK is Honorary Professor in the Department of Earth Sciences, Durham University, UK.
1997-2026 DolnySlask.com Agencja Internetowa





