• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Particle Filters for Random Set Models » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Particle Filters for Random Set Models

ISBN-13: 9781461463153 / Angielski / Twarda / 2013 / 174 str.

Branko Ristic
Particle Filters for Random Set Models Branko Ristic 9781461463153 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Particle Filters for Random Set Models

ISBN-13: 9781461463153 / Angielski / Twarda / 2013 / 174 str.

Branko Ristic
cena 562,23
(netto: 535,46 VAT:  5%)

Najniższa cena z 30 dni: 539,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
inne wydania

This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Kategorie:
Technologie
Kategorie BISAC:
Mathematics > Matematyka stosowana
Computers > Artificial Intelligence - General
Technology & Engineering > Electronics - General
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9781461463153
Rok wydania:
2013
Wydanie:
2013
Ilość stron:
174
Waga:
4.08 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

From the book reviews:

"The book realizes a happy union between theory and practice. Of high interest are the Algorithms for which their pseudo-codes are presented. We think we are faced with an excellent book that will have a great success and audience between those interested for new approaches in filtering theory." (Dumitru Stanomir, zbMATH 1306.93002, 2015)

3.3.2 Classification results References 4 Multi-object particle filters 4.1 Bernoulli particle filters 4.1.1 Standard Bernoulli particle filters 4.1.2 Bernoulli box-particle filter 4.2 PHD/CPDH particle filters with adaptive birth intensity 4.2.1 Extension of the PHD filter 4.2.2 Extension of the CPHD filter 4.2.3 Implementation

4.2.4 A numerical study 4.2.5 State estimation from PHD/CPHD particle filters 4.3 Particle filter approximation of the exact multi-object filter References 5 Sensor control for random set based particle filters 5.1 Bernoulli particle filter with sensor control 5.1.1 The reward function 5.1.2 Bearings only tracking in clutter with observer control 5.1.3 Target Tracking via Multi-Static Doppler Shifts 5.2 Sensor control for PHD/CPHD particle filters 5.2.1 The reward function 5.2.2 A numerical study 5.3 Sensor control for the multi-target state particle filter 5.3.1 Particle approximation of the reward function 5.3.2 A numerical study References 6 Multi-target tracking 6.1 OSPA-T: A performance metric for multi-target tracking 6.1.1 The problem and its conceptual solution 6.1.2 The base distance and labeling of estimated tracks 6.1.3 Numerical examples 6.2 Trackers based on random set filters 6.2.1 Multi-target trackers based on the Bernoulli PF 6.2.2 Multi-target trackers based on the PHD particle filter 6.2.3 Error performance comparison using the OSPA-T error 6.3 Application: Pedestrian tracking 6.3.1 Video dataset and detections 6.3.2 Description of Algorithms 6.3.3 Numerical results References 7 Advanced topics 7.1 Bernoulli filter for extended target tracking 7.1.1 Mathematical models 7.1.2 Equations of the Bernoulli filter for an extended target 7.1.3 Numerical Implementation 7.1.4 Simulation results 7.1.5 Application to a surveillance video 7.2 Calibration of tracking systems 7.2.1 Background and problem formulation 7.2.2 The proposed calibration algorithm 7.2.3 Importance sampling with progressive correction 7.2.4 Application to sensor bias estimation References Index

Branko Ristic is at the Defence Science and Technology Organisation, Australia

Defence Science and Technology Organisation, Australia

“Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based  on the Monte Carlo statistical method. The resulting  algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from  navigation and autonomous vehicles to bio-informatics and finance.

While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models.

This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Ristic, Branko Branko Ristic is a senior research scientist at th... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia