ISBN-13: 9783110250268 / Angielski / Twarda / 2011 / 487 str.
This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics."
This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics.