• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Ordinary Differential Equations with Applications to Mechanics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Ordinary Differential Equations with Applications to Mechanics

ISBN-13: 9789048173686 / Angielski / Miękka / 2010 / 488 str.

Mircea Soare; Petre P. Teodorescu; Ileana Toma
Ordinary Differential Equations with Applications to Mechanics Mircea Soare Petre P. Teodorescu Ileana Toma 9789048173686 Not Avail - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Ordinary Differential Equations with Applications to Mechanics

ISBN-13: 9789048173686 / Angielski / Miękka / 2010 / 488 str.

Mircea Soare; Petre P. Teodorescu; Ileana Toma
cena 603,81
(netto: 575,06 VAT:  5%)

Najniższa cena z 30 dni: 578,30
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

The present book has its source in the authors wish to create a bridge between mathematics and the technical disciplines that need a good knowledge of a strong mathematical tool. The authors tried to reflect a common experience of the University of Bucharest, Faculty of Mathematics and of the Technical University of Civil Engineering of Bucharest. The necessity of such an interdisciplinary work drove the authors to publish a first book with this aim ( Ecua ?ii diferen ?iale cu aplica ?ii in mecanica construc ?iilor Ordinary differential equations with applications to the mechanics of constructions, Editura Tehnic?, Bucharest, Romania). The present book is a new edition of the volume published in 1999. Unfortunately, the first author (M.V. Soare) passed away shortly before the publication of the Romanian edition, so that the present work is only due to the other two authors. It contains many improvements concerning the theoretical (mathematical) information, as well as new topics, using enlarged and updated references. We considered only ordinary differential equations and their solutions in an analytical frame, leaving aside their numerical approach. Compared to the Romanian edition, this volume presents the applications in a new way."

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka stosowana
Mathematics > Równania różniczkowe
Science > Mechanics - General
Wydawca:
Not Avail
Seria wydawnicza:
Mathematics and Its Applications
Język:
Angielski
ISBN-13:
9789048173686
Rok wydania:
2010
Numer serii:
000210076
Ilość stron:
488
Waga:
0.76 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

From the reviews:

"The purpose of this book is to present a large variety of examples from mechanics which illustrate numerous applications of the elementary theory of ordinary differential equations. It is intended primarily for the use of engineers, physicists and applied mathematicians ... . It may be also useful for students who will be using the ODEs. The book contains an introduction and seven chapters. ... Each chapter is provided with many illustrative and applicable examples and an Index is also added, including applications." (Antonio Cañada Villar, Zentralblatt MATH, Vol. 1123 (1), 2008)

"The goal of the authors of this introductory book on ordinary differential equations (ODEs) is to create a bridge between the mathematical and the technical disciplines. This book is a translation of the Romanian edition ... . the authors wrote an interesting book for technical engineers and applied mathematicians who are interested in ODEs and in mechanics." (Wim T. van Horssen, Mathematical Reviews, Issue 2008 c)

PREFACE. INTRODUCTION. Generalities. Ordinary differential equations. Supplementary conditions associated to ODEs. The Cauchy (initial) problem.The two-point problem. 1: LINEAR ODEs OF FIRST AND SECOND ORDER. 1.1 Linear first order ODEs. 1.1.1 Equations of the form . 1.1.2 The linear homogeneous equation. 1.1.3 The general case. 1.1.4 The method of variation of parameters (Lagrange’s method). 1.1.5 Differential polynomials. 1.2 Linear second order ODEs. 1.2.1 Homogeneous equations. 1.2.2 Non-homogeneous equations. Lagrange’s method. 1.2.3 ODEs with constant coefficients. 1.2.4 Order reduction. 1.2.5 The Cauchy problem. Analytical methods to obtain the solution. 1.2.6 Two-point problems (Picard). 1.2.7 Sturm-Liouville problems. 1.2.8 Linear ODEs of special form. 1.3. Applications 2: LINEAR ODEs OF HIGHER ORDER (n >2). 2.1 The general study of linear ODEs of order . 2.1.1 Generalities. 2.1.2 Linear homogeneous ODEs. 2.1.3 The general solution of the non-homogeneous ODE. 2.1.4 Order reduction. 2.2 Linear ODEs with constant coefficients. 2.2.1 The general solution of the homogeneous equation. 2.2.2 The non-homogeneous ODE. 2.2.3 Euler type ODEs. 2.3 Fundamental solution. Green function. 2.3.1 The fundamental solution. 2.3.2 The Green function. 2.3.3 The non-homogeneous problem. 2.3.4 The homogeneous two-point problem. Eigenvalues. 2.4 Applications. 3: LINEAR ODSs OF FIRST ORDER. 3.1 The general study of linear first order ODSs. 3.1.1 Generalities. 3.1.2 The general solution of the homogeneous ODS. 3.1.3 The general solution of the non-homogeneous ODS. 3.1.4 Order reduction of homogeneous ODSs. 3.1.5 Boundary value problems for ODSs. 3.2 ODSs with constant coefficients. 3.2.1 The general solution of the homogeneous ODS. 3.2.2 Solutions in matrix form for linear ODSs with constant coefficients. 3.3 Applications. 4: NON-LINEAR ODEs OF FIRST AND SECOND ORDER. 4.1 First order non-linear ODEs. 4.1.1 Forms of first order ODEs and oftheir solutions. 4.1.2 Geometric interpretation. The theorem of existence and uniqueness. 4.1.3 Analytic methods for solving first order non-linear ODEs. 4.1.4. First order ODEs integrable by quadratures. 4.2 Non-linear second order ODEs. 4.2.1 Cauchy problems. 4.2.2 Two-point problems. 4.2.3 Order reduction of second order ODEs. 4.2.4 The Bernoulli-Euler equation. 4.2.5 Elliptic integrals. 4.3 Applications. 5: NON-LINEAR ODSs OF FIRST ORDER. 5.1 Generalities. 5.1.1 The general form of a first order ODS. 5.1.2 The existence and uniqueness theorem for the solution of the Cauchy problem. 5.1.3 The particle dynamics. 5.2 First integrals of an ODS. 5.2.1 Generalities. 5.2.2 The theorem of conservation of the kinetic energy. 5.2.3 The symmetric form of an ODS. Integral combinations. 5.2.4 Jacobi’s multiplier. The method of the last multiplier. 5.3 Analytical methods of solving the Cauchy problem for non-linear ODSs. 5.3.1 The method of successive approximations (Picard-Lindelõff). 5.3.2 The method of the Taylor series expansion. 5.3.3 The linear equivalence method (LEM). 5.4 Applications. 6: VARIATIONAL CALCULUS. 6.1 Necessary condition of extremum for functionals of integral type. 6.1.1 Generalities. 6.1.2 Functionals of the form….. 6.1.3 Functionals of the form….. 6.1.4 Functionals of integral type, depending on n functions. 6.2 Conditional extrema. 6.2.1 Isoperimetric problems. 6.2.2 Lagrange’s problem. 6.3 Applications. 7: STABILITY. 7.1 Lyapunov Stability. 7.1.1 Generalities. 7.1.2 Lyapunov’s theorem of stability. 7.2 The stability of the solutions of dynamical systems. 7.2.1 Autonomous dynamical systems. 7.2.2 Long term behaviour of the solutions. 7.3 Applications. INDEX. REFERENCES.

Petre P. Teodorescu is professor at the University of Bucharest and member of the Romanian Academy of Sciences. He is president of the Section of Technical Mechanics and member of GAMM (Gesellschaft für Angewandte Mathematik und Mechanik). He was awarded by a prize of the Romanian Academy and is member of the editorial board of several scientific publications.

The present book has its source in the authors’ wish to create a bridge between the mathematical and the technical disciplines, which need a good knowledge of a strong mathematical tool. The necessity of such an interdisciplinary work drove the authors to publish a first book to this aim with Editura Tehnica, Bucharest, Romania.
The present book is a new, English edition of the volume published in 1999. It contains many improvements concerning the theoretical (mathematical) information, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.
The problem is firstly stated in its mechanical frame. Then the mathematical model is set up, emphasizing on the one hand the physical magnitude playing the part of the unknown function and on the other hand the laws of mechanics that lead to an ordinary differential equation or system. The solution is then obtained by specifying the mathematical methods described in the corresponding theoretical presentation. Finally a mechanical interpretation of the solution is provided, this giving rise to a complete knowledge of the studied phenomenon.
The number of applications was increased, and many of these problems appear currently in engineering.

Audience
Mechanical and civil engineers, physicists, applied mathematicians, astronomers and students. The prerequisites are courses of elementary analysis and algebra, as given at a technical university. On a larger scale, all those interested in using mathematical models and methods in various fields, like mechanics, civil and mechanical engineering, and people involved in teaching or design will find this work indispensable.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia