ISBN-13: 9781119819233 / Angielski / Twarda / 2022 / 400 str.
ISBN-13: 9781119819233 / Angielski / Twarda / 2022 / 400 str.
Preface xviAbout the Editors xviiiList of Contributors xixPart A Introduction 1Introduction 3Sandip Nandi and Dalia NandiA. Optical Communication Networks 3A.1 Historical Perspective 3A.2 Essential Background 6A.2.1 Optical Networks 6A.2.2 SONET/SDH 6A.2.3 Multiplexing 7A.2.4 All-Optical Networks 7A.2.5 Optical Transport Network 8B. Optical Switching in Networks 8B.1 Historical Perspective 8B.2 Essential Background 9B.2.1 Optical Switching in Networks 9B.2.2 Optical Switching in Practice 9B.2.3 Optical Switch Technology 10C. Organization of This Book 10Bibliography 11Part B Switch Characterization 131 Optical Switches 15Rajan Agrahari, Sambit Kumar Ghosh, and Somak Bhattacharyya1.1 Introduction 151.2 Electro-Optical Switching 161.2.1 Working Principle of Electro-Optical Switches 161.2.2 Realization of Electro-Optical Switches 171.3 Acoustic-Optical Switching 181.3.1 Types of Acoustic-Optical Switching 181.3.2 Acoustic-Optical Device Materials and Applications 191.4 Thermo-Optical Switching 191.4.1 Working Principle of Thermo-Optical Switches 201.4.2 Realization of Thermo-Optical Switches 201.4.3 Thermo-Optical Switch Materials and Applications 211.5 Liquid Crystal-Optical Switching 211.5.1 Types of Liquid Crystal-Optical Switches 211.5.2 Liquid Crystal-Optical Switch Applications 221.6 Photonic Crystal Optical Switching 221.7 Semiconductor Optical Amplifier (SOA) Optical Switching 231.8 Magneto-Optical (MO) Optical Switching 251.9 Micro Electro-Mechanical Systems (MEMS) Optical Switching 251.10 Metasurfaces Switches 261.11 Conclusion 26Bibliography 272 Electro-Optic Switches 31Arpita Adhikari, Joydip Sengupta, and Arijit De2.1 Introduction 312.2 Operating Principles 322.2.1 Operating Principles of the Single-Mode Switch 322.2.2 Operating Principles of the Multimode Switch 322.3 Materials for the Fabrication of Electro-Optic Switch 342.3.1 Ferroelectric Materials 342.3.2 Compound Semiconductors 352.3.3 Polymers 352.4 Device Structures of Electro-Optical Switches 362.4.1 1 × 1 Switch 362.4.2 1 × 2 Switch 372.4.3 2 × 2 Switch 392.4.4 2 × 3 Switch 402.4.5 3 × 2 Switch 412.4.6 3 × 3 Switch 422.4.7 1 × 4 Switch 422.4.8 2 × 4 Switch 432.5 Conclusions 43Bibliography 443 Thermo-Optical Switches 47Fulong Yan, Xuwei Xue, and Chongjin Xie3.1 History of Thermal Optical Switching 473.2 Principles of Thermo-Optic Switch 473.2.1 Thermo-Optic Effect 473.2.2 Trade-Off Between Switching Time and Power Consumption 483.2.3 Merits of Thermo-Optic Switch 493.3 Category 493.3.1 Material 493.3.2 Implementation Principle 513.3.3 Device Architecture 513.4 Scalability 523.4.1 Binary Tree 523.4.2 Modified Crossbar 533.4.3 Benes 543.5 Application Scenarios 54Bibliography 554 Magneto-Optical Switches 57K. Sujatha4.1 Introduction 574.1.1 Types of Optical Switch 574.1.2 How Does an Optical Switch Work? 594.1.3 Applications of Optical Switches 594.2 All-Optical Switch 604.2.1 Why is an All-Optical Switch Useful? 624.3 Magneto-Optical Switches 644.3.1 Magneto-Optical Switch Features 644.3.2 Principles of Magneto-Optical Switches 654.3.2.1 The Design Core of the Magneto-Optical Switch 654.3.3 Magneto-Optic Effect 664.4 Faraday Rotation 684.4.1 Phenomenological Model 684.4.2 Atomic Model 68Bibliography 70Further Reading 705 Acousto-Optic Switches 73Sudipta Ghosh, Chandan Kumar Sarkar, and Manash Chanda5.1 Introduction 735.2 Fundamentals of Acousto-Optic Effect 735.3 Acousto-Optic Diffraction 745.4 Raman-Nath Diffraction 765.5 Bragg Diffraction 775.6 Principle of Operation of AO Switches 785.7 Acousto-Optic Modulator 805.7.1 Acousto-Optic Q-Switching 815.7.2 Telecommunication Network 825.8 Recent Trends and Applications 835.8.1 Emerging Spatial Mode Conversion in Few-Mode Fibers 835.8.2 Lithium Niobate Thin Films 845.8.3 Optical Fiber Communication and Networking 85Bibliography 866 MEMS-based Optical Switches 93Kalyan Biswas and Angsuman Sarkar6.1 Introduction 936.2 Micromachining Techniques 946.2.1 Bulk Micromachining 956.2.2 Surface Micromachining 956.3 Switch Architectures 976.3.1 One-Dimensional Switches 976.3.2 Two-Dimensional MEMS Switches 976.3.3 Three-Dimensional MEMS Switches 986.4 Mechanisms of Actuations 1006.4.1 Electrostatic Actuation 1006.4.2 Magnetic Actuation 1006.4.3 Thermal Actuation 1006.4.4 Piezoelectric Actuation Mechanisms 1006.4.5 Other Actuation Mechanisms 1016.5 Optical Switch Parameters 1016.5.1 Switching Time 1026.5.2 Insertion Loss 1026.5.3 Crosstalk 1026.5.4 Wavelength 1026.5.5 Power Consumption 1026.6 Challenges 1036.6.1 Optical Beam Divergence 1036.6.2 Angular Control 1036.6.3 Reliability of Optical MEMS 1036.7 Conclusion 104Bibliography 1047 SOA-based Optical Switches 107Xuwei Xue, Shanguo Huang, Bingli Guo, and Nicola Calabretta7.1 Introduction 1077.2 SOA Structure 1077.2.1 Active Region 1087.2.2 Inter-Band Versus Intra-Band Transition 1097.2.3 Transparency Threshold 1107.2.4 Gain Nonlinearity 1117.2.5 Polarization-Insensitive SOA 1117.2.6 Noise in SOA 1127.3 Design Criteria of SOA-Based Switch 1137.3.1 Effect of Doping on Gain Dynamics 1137.3.2 Gain Dynamic for SOA 1157.3.2.1 Bulk-Active Regions 1167.3.2.2 Quantum Well/Multi-Quantum Well (MQW) Active Regions 1167.3.2.3 Quantum Dots 1167.3.3 Noise Suppression 1177.3.4 Scalability 1187.4 Advancements on SOA-Based Switch 1207.5 Networks Employing SOA-Based Switch 1227.5.1 Metro-Access Network 1227.5.2 RF Network 1227.5.3 Silicon Photonic Switching 1227.5.4 Data Center Network 1237.6 Discussion and Future Work 123Bibliography 1248 Liquid Crystal Switches 129Swarnil Roy and Manash Chanda8.1 Introduction 1298.2 Liquid Crystal and Its Properties 1318.3 LC Structures for Optical Switching 1318.3.1 Twisted Nematic (TN) cells 1318.3.2 Surface-Stabilized Ferroelectric Liquid Crystal (SSFLC) Cells 1338.3.3 Spatial Light Modulator (SLM) Cells 1338.4 Liquid Crystal Switches 1348.4.1 Optical Crystal Switching Architectures 1348.4.2 Switches Based on Polarization 1358.4.2.1 Performance Analysis of Polarization-Based Switch Architecture 1368.4.3 LC Amplitude and Phase Modulator 1388.4.4 LC-Based Wavelength-Selective Switches (WSS) 1408.4.4.1 WSS Based on LCOS 1418.5 The Future of LC switches 1418.5.1 Liquid Crystal Photonic Crystal Fibers 1418.5.2 Ring Resonators with LC 142Bibliography 1429 Photonic Crystal All-Optical Switches 147Rashmi Kumari, Anjali Yadav, and Basudev Lahiri9.1 Idea of Photonics 1479.2 Principles of Photonic Crystal All-Optical Switches (AOS) 1489.3 Growth and Characterization of Optical Quantum Dots 1509.3.1 Integration of PhCs-Based AOS with Optical Quantum Dots (QDs) 1509.3.2 Growth and Characterization of Quantum Dots 1529.3.2.1 Growth of Quantum Dots 1529.3.2.2 Colloidal Solution Via Chemical Synthesis 1529.3.2.3 Self-Assembly Technique 1539.3.2.4 Characterization of Quantum Dots 1549.3.2.5 Photoluminescence Spectroscopy 1549.3.2.6 UV-Vis Spectroscopy 1549.4 Design and Fabrication 1559.4.1 Sample Preparation 1559.4.2 Lithography 1559.4.2.1 Electron Beam Lithography (EBL) 1559.4.2.2 Optical UV Lithography 1559.4.3 Etching 1559.4.3.1 Wet Etching 1559.4.3.2 Dry Etching 1569.5 Device Structure and Performance Analysis of Photonic Crystal All-Optical Switches 1569.6 Challenges and Recent Research Trends of Photonic Crystal All-Optical Switches 159Bibliography 16010 Optical-Electrical-Optical (O-E-O) Switches 165Piyali Mukherjee10.1 Introduction 16510.2 Optical Switching Technologies: Working Principle 16610.2.1 Optical-Electrical-Optical Switching 16610.2.2 Optical Data Unit Switching 16710.2.3 Reconfigurable Optical Add-Drop Multiplexer (ROADM)-Based Switching 16810.2.4 A hybrid approach 16910.3 Optical Transponders 16910.3.1 WDM Transponders: An Introduction 16910.3.2 Basic Working of Optical Transponders 17010.3.3 Necessity of Optical Transponder (OEO) in WDM System 17110.3.4 Applications of Optical Transponders 17110.3.5 Network Structure with Optical Transponder 17210.3.5.1 WDM Ring Employing Line Network 17210.3.5.2 WDM Ring Employing Star Network 17210.3.6 Differences Between Transponder, Muxponder, and Transceiver 17310.3.7 Summary 17410.4 Performance Analysis Study of All-Optical Switches, Electrical Switches, and Hybrid Switches in Networks 17410.4.1 Introduction 17410.4.2 Optical vs. Electrical vs. Hybrid Telecom Switches 17510.4.3 Optical vs. Electrical vs. Hybrid Data Center Switches 17710.4.4 Summary 17910.5 Electrical and Optoelectronic Technology for Promoting Connectivity in Future Systems 17910.5.1 CMOS Technology 18010.5.2 Considerations for Selection of Interconnects 18010.6 Conclusion 181Bibliography 18111 Quantum Optical Switches 185Surabhi Yadav and Aranya B. Bhattacherjee11.1 Introduction 18511.2 Quantum Dot as an Optical Switch 18611.2.1 Vertical Cavities 18711.2.2 Power Density 18911.3 Quantum Well as an Optical Switch 19111.3.1 Optical Properties 19111.3.2 Self-Electro-Optic-Effect Devices 19311.4 Optomechanical Systems as Optical Switch 19311.4.1 Optical Nonlinearity 19311.4.2 Hybrid Optomechanics 19511.4.3 Electro-opto Mechanics 19811.5 Conclusion and Future Outlook 198Bibliography 19912 Nonlinear All-Optical Switch 203Rajarshi Dhar, Arpan Deyasi, and Angsuman Sarkar12.1 Introduction 20312.2 Classification of All-Optical Switches 20312.2.1 Thermo-Optical Switch 20312.2.2 Acousto-Optic Switch 20412.2.3 Liquid Crystal Optical Switch 20612.2.4 Nonlinear Optical Switch 20712.3 Classification of Nonlinear All-Optical Switches 20712.3.1 Optical Coupler AOS 20812.3.2 Sagnac Interferometer AOS 21012.3.3 M-Z Interferometer AOS 21012.3.4 Ring Resonator AOS 21112.3.5 Fiber Grating AOS 21212.4 Working Methodology of Different Types of Nonlinear All-Optical Switches 21212.4.1 Optical Coupler AOS 21212.4.1.1 Symmetric Coupler Working at Low Incident Power 21312.4.1.2 Symmetric Coupler Working in High-Power Incident Light with SPM 21412.4.1.3 Asymmetric Coupler Working in High-Power Pump Light with Cross-phase Modulation 21712.4.2 Sagnac Interferometer AOS 21912.4.2.1 Sagnac Interferometer (SI) Under Low Incident Power 21912.4.2.2 Sagnac Interferometer AOS with Non-3dB Coupler 22012.4.2.3 Sagnac Interferometer AOS in Cross-Phase Modulation 22112.4.2.4 Sagnac Interferometer AOS with Optical Amplifier 22212.4.3 M-Z Interferometer AOS 22312.4.3.1 M-Z Interferometer AOS with Different Arm Materials 22312.4.3.2 M-Z Interferometer All-Optical Switch with Different Arm Lengths 22412.4.4 Ring Resonator AOS 22512.4.4.1 AOS in M-Z Interferometer Coupled with SCRR 22512.4.4.2 AOS in DCRR 22712.4.5 Fiber Grating AOS 22912.4.5.1 Single Nonlinear FBG AOS 22912.4.5.2 Single Nonlinear LPFG AOS 23112.5 Nanoscale AOS 23312.6 Future Scope and Conclusion 234Bibliography 23513 Silicon Photonic Switches 239Nadir Ali, Mohammad Faraz Abdullah, and Rajesh Kumar13.1 Introduction 23913.2 Performance Parameters 23913.3 Silicon Photonic Platform 24013.4 Physical Principles for Operation of Switches 24113.4.1 Electro-optic Effect 24213.4.2 Carrier Injection/Extraction 24213.4.3 Thermo-optic Effect 24213.4.4 All-optical Effect 24313.5 Major Configurations 24413.5.1 Directional Coupler 24413.5.2 Microring Resonator 24513.5.3 Mach-Zehnder Interferometer 24613.5.4 Micro-Electro-Mechanical System 24713.6 Hybrid Silicon Photonic Switches 24813.6.1 III-V Materials 24813.6.2 2D Materials 24813.6.3 Phase Change Materials 24913.7 Switch Fabrics Using MRR and MZI 25213.8 Summary 252Bibliography 252Part C Application of Optical Switches in Networks 25714 Switch Control: Bridging the Last Mile for Optical Data Centers 259Nicola Calabretta and Xuwei Xue14.1 Introduction 25914.2 Switch Control Classification 26014.2.1 Electrical Switch Control 26014.2.2 Slow Optical Switch Control 26114.2.3 Fast Optical Switch Control 26214.3 Challenges for Switch Fabric Control 26414.3.1 Scalable Control Plane 26414.3.2 Precise Time Synchronization 26514.3.3 Fast Burst Clock Data Recovery 26614.3.4 Lack of Optical Buffer 26714.3.5 Reliability 26814.4 Switch Fabric Control: State of the Art 26814.4.1 Predefined Control 26814.4.2 SDN Control 26814.4.3 Label Control 27014.4.4 AI Control 271Bibliography 27215 Reliability in Optical Networks 277Antony Gratus Varuvel and Rajendra Prasath15.1 Introduction 27715.2 RAMS in Optical Networks 27815.3 Objectives 27815.4 Life Cycle of a Product/Project 27815.5 Preamble to RAMS 27915.5.1 Reliability 28015.5.2 Availability 28115.5.3 Maintainability 28115.5.4 System Safety 28115.6 Significance of Reliability in Optical Interconnect Systems 28215.7 Typical Components of Optical Circuitry 28215.8 Generic Types of Optical System 28415.8.1 Factors Influencing Reliability in Optical Networks 28415.8.2 Initial Insight of Failures 28415.9 Ensuring RAMS for the Optical System 28515.9.1 Reliability - An Essential Insight 28515.9.1.1 Typical Reliability Configurations 28615.9.1.2 Reliability Metrics 28715.9.1.3 Reliability Apportionment 29215.9.1.4 Hardware Reliability Prediction 29215.9.1.5 Software Reliability Prediction 29415.9.1.6 Derating Analysis 29415.9.1.7 Stress-Strength Interference Analysis 29415.9.1.8 Reliability Estimation 29515.9.1.9 Failure Mode Effects and Criticality Analysis 29515.9.1.10 Failure Mode Effects Test Cases 29615.9.1.11 Reliability Assessment/Demonstration 29715.9.1.12 Human Error Analysis 29715.9.1.13 Reliability Growth Analysis 29715.9.1.14 Life Data Analysis 29815.9.1.15 Physics of Failure 29815.9.1.16 Design-Cost Trade-off 29915.9.2 Availability Measures of Optical Networks 29915.9.2.1 Availability Assessment 29915.9.2.2 Reliability-Centered Maintenance 30015.9.2.3 Competing Failure Modes 30115.9.2.4 Warranty Analysis 30115.9.2.5 Trend Analysis 30215.9.3 Maintainability Aspects of Optical Networks 30215.9.3.1 Maintainability Apportionment 30215.9.3.2 Maintainability Assessment 30315.9.3.3 Maintainability Demonstration 30315.9.3.4 Maintainability Estimation/Evaluation 30315.9.3.5 Maintainability Prediction 30315.9.3.6 Maintenance Strategy [Plan/Philosophy] 30315.9.3.7 Spare Parts Optimization 30415.9.3.8 Failure Reporting and Corrective Action System 30415.9.4 Optical Networks for Safety-Critical Applications 30415.9.4.1 Common Cause Analysis 30515.9.4.2 Common Mode Analysis 30715.9.4.3 Fault Tree Analysis 30715.9.4.4 Functional Hazard Analysis 30815.9.4.5 Hazard and Operability Studies 30815.9.4.6 Zonal Safety Analysis 30915.9.4.7 Particular Risk Assessment 30915.9.4.8 Software Risk Assessment 30915.9.4.9 Event Tree Analysis 31015.10 Process Control in Optical Components 31015.11 Hardware - Software Interactions (HSI) in Optical Networks 31015.12 Typical RAMS Realisation Plan for an Optical System 31115.12.1 System-level RAMS Activities 31115.12.2 Item-level RAMS Activities 31215.13 Trade-off Factors of Optical Networks 31415.14 Some Open Problems in RAMS-Optical System 31415.15 Conclusion 314Bibliography 31516 Protection, Restoration, and Improvement 317Arighna Basak and Angsuman Sarkar16.1 Introduction 31716.2 Objectives of Protection and Restoration 31916.3 Current Fault Protection and Restoration Techniques 31916.3.1 Link Protection 32016.3.2 Path Protection 32116.3.2.1 Current Fault Protection Techniques 32116.3.2.2 Path Protection in Mesh Network 32116.3.2.3 Path Protection in Ring Networks 32216.3.2.4 OMS Link Protection-OMS-SPRing (Optical Multiplex Section-Shared Protection Ring) 32216.3.2.5 Ring Loopback 32316.3.2.6 Current Restoration Techniques 32516.4 Energy Efficiency of Optical Switching Technology 32616.5 Signal Quality Monitoring Techniques 32716.6 Challenges and Recent Research Trends 32816.7 Conclusion 330Bibliography 33017 Optical Switching for High-Performance Computing 335Rajendra Prasath, Bheemappa Halavar, and Odelu Vanga17.1 Introduction 33517.2 Optical Switching 33617.2.1 Basics of Optical Switching 33617.2.2 Types of Optical Switching 33717.2.2.1 Optical Packet Switching 33717.2.2.2 Circuit Switching 33817.3 Communication vs Computation 33817.4 Path Reservation Algorithms 33817.5 High-Performance Optical Switching and Routing 33917.5.1 HPC Interconnection Challenges 33917.5.2 Challenges in the Design of Optical Interconnection Network 34017.6 Optical Switching Schemes for HPC Applications 34017.6.1 Routing Scheme (Avoid Packet Loss, Contention, etc.) 34117.6.1.1 Buffering Schemes 34117.7 Security Issues in Optical Switching 34217.7.1 Network Vulnerabilities 34217.7.1.1 Eavesdropping 34217.7.2 Jamming Attacks (or Types of Attacks) 34317.8 Optical Switching - Interesting Topics 34417.9 Conclusion 344Bibliography 34418 Software for Optical Network Modelling 347Devlina Adhikari18.1 Optical Networks 34718.1.1 First Generation of Optical Networks 34718.1.2 Second Generation of Optical Networks 34818.1.2.1 Passive Optical Network 34918.1.2.2 Elastic Optical Network 34918.1.2.3 Cognitive Optical Network 34918.1.2.4 Optical Neural Network 35018.2 Simulation Tools for Planning of Optical Network 35018.2.1 Network Simulators 35018.2.1.1 NS-2 35018.2.1.2 NS-3 35118.2.1.3 OMNeT++ 35118.2.1.4 OPNET 35218.2.2 Physical Layer Simulation 35218.3 New Technologies 35318.3.1 Space Division Multiplexing (SDM) 35318.3.2 Software-Defined Networking (SDN) 35318.3.3 Artificial Intelligence/Machine Learning (AI/ML) 353Bibliography 353Index 359
Dalia Nandi is Assistant Professor of Electronics and Telecommunication Engineering at the Indian Institute of Information Technology, India.Sandip Nandi is Assistant Professor of Electronics and Communication Engineering at the Kalyani Government Engineering College, India.Angsuman Sarkar is Professor of Electronics and Communication Engineering at the Kalyani Government Engineering College, India.Chandan Kumar Sarkar is Professor of Electronics and Telecommunication Engineering at Jadavpur University in India.
1997-2025 DolnySlask.com Agencja Internetowa