ISBN-13: 9783330351721 / Angielski / Miękka / 2017 / 216 str.
Developing an accurate and efficient Sketch-Based Image Retrieval (SBIR) method in determining the resemblances between the user's query and image stream has been a never-ending quest in digital data communication era. The main challenge is to overcome the asymmetry between a binary sketch and a full-color image. We introduce a unique sketch board mining method to recover the online web images. This image conceptual retrieval is performed by matching the sketch query with the relevant terminology of selected images. A systematic sequence is followed, including the sketch drawing by the user in interpreting its geometrical shape of the conceptual form based on annotation metadata matching technique achieved automatically from Google engines, indexing and clustering the selected images via data mining. The proposed technique solved many problems that stat-of-art suffered from SBIR (e.g. scaling, transport, imperfect) sketch. Furthermore, it is demonstrated that the proposed technique allowed us to exploit high-level features to search the web semantically effective.