Glossaries.- Motivation and Outline.- Injection Moulded Short Fibre Reinforced Thermoplastics.- Polymeric Matrix Materials.- Reinforcement Fibres.- Composite Properties.- Injection Moulding.- Determination of Fibre Distributions.- State of the Art of SFRP Material Modelling.- Mechanical Basics.- Kinematics.- Stress.- Linear Elasticity.- Yield Condition and Plastic Potential.- Limit Criteria.- Damage.- Rate Dependency.- Material Characterisation.- Choice of Material.- Coordinate System Definition.- Experimental Set-up.- Experimental Results.- Discussion of Temperature Effects.- Material Modelling.- Overview.- Modelling of Linear Elasticity.- Modelling of Plastic Behaviour.- Modelling of Damage and Failure.- Numerical Implementation.- Verification.- Verification of Linear Elastic Response.- Verification of Plastic Response.- Numerical Verification of the Material Model.- Considerations for Engineering Practice 1857.- Determination of the Elastic Stiffness Matrix.- Determination of the Limit of Linear Deformation.- Determination of Plastic Deformation.- Consideration of Damage and Failure.- Summary and Outlook.
Dr.-Ing. Felix Dillenberger is a mechanical engineer whose research focusses on the characterisation of the mechanical behaviour of thermoplastic plastics and their modelling in finite element simulations.
This work introduces a material modelling approach for explicit finite element simulations of injection moulded short fibre reinforced thermoplastics. The material model considers linear-elastic behaviour and non-linear orthotropic stress-state dependent viscoplastic deformation for arbitrary fibre distributions. Regarding elasticity and the initial yield surface, a micro-mechanical Mori-Tanaka based approach is applied. On the matrix level an isotropic quadratic yield surface is introduced which is transferred into a Tsai-Wu yield surface on the composite level. An analytical expression for non-linear hardening and a simplified consideration of strain rate dependency is presented. The constitutive equations were verified with the experiments of a self-compounded PPGF30 material regarding regarding tension, compression and shear at different orientation distributions.