• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Numerical Solution of Odes » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Numerical Solution of Odes

ISBN-13: 9780470042946 / Angielski / Twarda / 2009 / 272 str.

Kendall Atkinson; Weimin Han; David W. Stewart
Numerical Solution of Odes Atkinson, Kendall 9780470042946 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Numerical Solution of Odes

ISBN-13: 9780470042946 / Angielski / Twarda / 2009 / 272 str.

Kendall Atkinson; Weimin Han; David W. Stewart
cena 522,40 zł
(netto: 497,52 VAT:  5%)

Najniższa cena z 30 dni: 518,11 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including:

  • Euler's method
  • Taylor and Runge-Kutta methods
  • General error analysis for multi-step methods
  • Stiff differential equations
  • Differential algebraic equations
  • Two-point boundary value problems
  • Volterra integral equations
Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB(R) programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Równania różniczkowe
Wydawca:
John Wiley & Sons
Seria wydawnicza:
Pure and Applied Mathematics: A Wiley-Interscience Series of
Język:
Angielski
ISBN-13:
9780470042946
Rok wydania:
2009
Numer serii:
000019450
Ilość stron:
272
Waga:
0.50 kg
Wymiary:
23.62 x 15.75 x 2.03
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

"An accompanying Web site offers access to more than ten MATLAB programs." (CHOICE, December 2009)

Preface.

Introduction.

1. Theory of differential equations: an introduction.

1.1 General solvability theory.

1.2 Stability of the initial value problem.

1.3 Direction fields.

Problems.

2. Euler s method.

2.1 Euler s method.

2.2 Error analysis of Euler s method.

2.3 Asymptotic error analysis.

2.3.1 Richardson extrapolation.

2.4 Numerical stability.

2.4.1 Rounding error accumulation.

Problems.

3. Systems of differential equations.

3.1 Higher order differential equations.

3.2 Numerical methods for systems.

Problems.

4. The backward Euler method and the trapezoidal method.

4.1 The backward Euler method.

4.2 The trapezoidal method.

Problems.

5. Taylor and Runge–Kutta methods.

5.1 Taylor methods.

5.2 Runge–Kutta methods.

5.3 Convergence, stability, and asymptotic error.

5.4 Runge–Kutta–Fehlberg methods.

5.5 Matlab codes.

5.6 Implicit Runge–Kutta methods.

Problems.

6. Multistep methods.

6.1 Adams–Bashforth methods.

6.2 Adams–Moulton methods.

6.3 Computer codes.

Problems.

7. General error analysis for multistep methods.

7.1 Truncation error.

7.2 Convergence.

7.3 A general error analysis.

Problems.

8. Stiff differential equations.

8.1 The method of lines for a parabolic equation.

8.2 Backward differentiation formulas.

8.3 Stability regions for multistep methods.

8.4 Additional sources of difficulty.

8.5 Solving the finite difference method.

8.6 Computer codes.

Problems.

9. Implicit RK methods for stiff differential equations.

9.1 Families of implicit Runge–Kutta methods.

9.2 Stability of Runge–Kutta methods.

9.3 Order reduction.

9.4 Runge–Kutta methods for stiff equations in practice.

Problems.

10. Differential algebraic equations.

10.1 Initial conditions and drift.

10.2 DAEs as stiff differential equations.

10.3 Numerical issues: higher index problems.

10.4 Backward differentiation methods for DAEs.

10.5 Runge–Kutta methods for DAEs.

10.6 Index three problems from mechanics.

10.7 Higher index DAEs.

Problems.

11. Two–point boundary value problems.

11.1 A finite difference method.

11.2 Nonlinear two–point boundary value problems.

Problems.

12. Volterra integral equations.

12.1 Solvability theory.

12.2 Numerical methods.

12.3 Numerical methods – Theory.

Problems.

Appendix A. Taylor s theorem.

Appendix B. Polynomial interpolation.

Bibliography.

Index.

Kendall E. Atkinson, PhD, is Professor Emeritus in the Departments of Mathematics and Computer Science at the University of Iowa. He has authored books and journal articles in his areas of research interest, which include the numerical solution of integral equations and boundary integral equation methods. Weimin Han, PhD, is Professor in the Department of Mathematics at the University of Iowa, where he is also Director of the interdisciplinary PhD Program in Applied Mathematical and Computational Science. Dr. Han currently focuses his research on the numerical solution of partial differential equations. David E. Stewart, PhD, is Professor and Associate Chair in the Department of Mathematics at the University of Iowa, where he is also the departmental Director of Undergraduate Studies. Dr. Stewart′s research interests include numerical analysis, computational models of mechanics, scientific computing, and optimization.

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance

Numerical Solution of Ordinary Differential Equations presents a complete and easy–to–follow introduction to classical topics in the numerical solution of ordinary differential equations. The book′s approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real–world problems.

Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors′ collective academic experience ensures a coherent and accessible discussion of key topics, including:

  • Euler′s method

  • Taylor and Runge–Kutta methods

  • General error analysis for multi–step methods

  • Stiff differential equations

  • Differential algebraic equations

  • Two–point boundary value problems

  • Volterra integral equations

Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics.

Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper–undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia