• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Nonsmooth Mechanics: Models, Dynamics and Control » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Nonsmooth Mechanics: Models, Dynamics and Control

ISBN-13: 9781447111610 / Angielski / Miękka / 2012 / 552 str.

Bernard Brogliato
Nonsmooth Mechanics: Models, Dynamics and Control Brogliato, Bernard 9781447111610 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Nonsmooth Mechanics: Models, Dynamics and Control

ISBN-13: 9781447111610 / Angielski / Miękka / 2012 / 552 str.

Bernard Brogliato
cena 605,23 zł
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Thank you for opening the second edition of this monograph, which is devoted to the study of a class of nonsmooth dynamical systems of the general form: :: i; = g(x, u) (0. 1) f(x, t) 2: 0 where x E JRn is the system's state vector, u E JRm is the vector of inputs, and the function f (-, . ) represents a unilateral constraint that is imposed on the state. More precisely, we shall restrict ourselves to a subclass of such systems, namely mechanical systems subject to unilateral constraints on the position, whose dynamical equations may be in a first instance written as: ii= g(q, q, u) (0. 2) f(q, t) 2: 0 where q E JRn is the vector of generalized coordinates of the system and u is an in put (or controller) that generally involves a state feedback loop, i. e. u= u(q, q, t, z), with z= Z(z, q, q, t) when the controller is a dynamic state feedback. Mechanical systems composed of rigid bodies interacting fall into this subclass. A general prop erty of systems as in (0. 1) and (0. 2) is that their solutions are nonsmooth (with respect to time): Nonsmoothness arises primarily from the occurence of impacts (or collisions, or percussions) in the dynamical behaviour, when the trajectories attain the surface f(x, t) = O. They are necessary to keep the trajectories within the subspace = {x: f(x, t) 2: O} of the system's state space."

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Materials Science - General
Technology & Engineering > Mechanical
Technology & Engineering > Electronics - General
Wydawca:
Springer
Seria wydawnicza:
Communications and Control Engineering (Paperback)
Język:
Angielski
ISBN-13:
9781447111610
Rok wydania:
2012
Wydanie:
1999. Softcover
Numer serii:
000383647
Ilość stron:
552
Waga:
0.79 kg
Wymiary:
23.39 x 15.6 x 2.97
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

From reviews for the first edition:

It is written with clarity, contains the latest research results in the area of impact problems for rigid bodies and is recommended for both applied mathematicians and engineers.

Mathematical Reviews 1998f (Reviewer: P.D. Panagiotopoulos)

The presentation is excellent in combining rigorous mathematics with a great number of examples ranging from simple mechanical systems to robotic systems allowing the reader to understand the basic concepts.

Mathematical Abstracts (Reviewer: H. Troger)

1 Distributional model of impacts.- 1.1 External percussions.- 1.2 Measure differential equations.- 1.2.1 Some properties.- 1.2.2 Additional comments.- 1.3 Systems subject to unilateral constraints.- 1.3.1 General considerations.- 1.3.2 Flows with collisions.- 1.3.3 A system theoretical geometric approach.- 1.3.4 Descriptor variable systems.- 1.4 Changes of coordinates in MDEs.- 1.4.1 From measure to Carathéodory systems.- 1.4.2 Decoupling of the impulsive effects (commutativity conditions).- 1.4.3 From measure to Filippov’s differential equations: the Zhuravlev-Ivanov method.- 2 Approximating problems.- 2.1 Simple examples.- 2.1.1 From elastic to hard impact.- 2.1.2 From damped to plastic impact.- 2.1.3 The general case.- 2.2 The method of penalizing functions.- 2.2.1 The elastic rebound case.- 2.2.2 A more general case.- 2.2.3 Uniqueness of solutions.- 3 Variational principles.- 3.1 Virtual displacements principle.- 3.2 Gauss’ principle.- 3.2.1 Additional comments and studies.- 3.3 Lagrange’s equations.- 3.4 External impulsive forces.- 3.4.1 Example: flexible joint manipulators.- 3.5 Hamilton’s principle and unilateral constraints.- 3.5.1 Introduction.- 3.5.2 Modified set of curves.- 3.5.3 Modified Lagrangian function.- 3.5.4 Additional comments and studies.- 4 Two bodies colliding.- 4.1 Dynamical equations of two rigid bodies colliding.- 4.1.1 General considerations.- 4.1.2 Relationships between real-world and generalized normal di-rections.- 4.1.3 Dynamical equations at collision times.- 4.1.4 The percussion center.- 4.2 Percussion laws.- 4.2.1 Oblique percussions with friction between two bodies.- 4.2.2 Rigid body formulation: Brach’s method.- 4.2.3 Additional comments and studies.- 4.2.4 Rigid body formulation: Frémond’s approach.- 4.2.5 Dynamical equations during the collision process: Darboux-Keller’s shock equations.- 4.2.6 Stronge’s energetical coefficient.- 4.2.7 3 dimensional shocks- Ivanov’s energetical coefficient.- 4.2.8 A third energetical coefficient.- 4.2.9 Additional comments and studies.- 4.2.10 Multiple micro-collisions phenomenon: towards a global coef-ficient.- 4.2.11 Conclusion.- 4.2.12 The Thomson and Tait formula.- 4.2.13 Graphical analysis of shock dynamics.- 4.2.14 Impacts in flexible structures.- 5 Multiconstraint nonsmooth dynamics.- 5.1 Introduction. Delassus’ problem.- 5.2 Multiple impacts: the striking balls examples.- 5.3 Moreau’s sweeping process.- 5.3.1 General formulation.- 5.3.2 Application to mechanical systems.- 5.3.3 Existential results.- 5.3.4 Shocks with friction.- 5.4 Complementarity formulations.- 5.4.1 General introduction to LCPs and Signorini’s conditions.- 5.4.2 Linear Complementarity Problems.- 5.4.3 Relationships with quadratic problems.- 5.4.4 Linear complementarity systems.- 5.4.5 Additional comments and studies.- 5.5 The Painlevé’s example.- 5.5.1 Lecornu’s frictional catastrophes.- 5.5.2 Conclusions.- 5.5.3 Additional comments and bibliography.- 5.6 Numerical analysis.- 5.6.1 General comments.- 5.6.2 Integration of penalized problems.- 5.6.3 Specific numerical algorithms.- 6 Generalized impacts.- 6.1 The frictionless case.- 6.1.1 About “complete” Newton’s rules.- 6.2 The use of the kinetic metric.- 6.2.1 The kinetic energy loss at impact.- 6.3 Simple generalized impacts.- 6.3.1 2-dimensional lamina striking a plane.- 6.3.2 Shock of a particle against a pendulum.- 6.4 Multiple generalized impacts.- 6.4.1 The rocking block problem.- 6.5 General restitution rules for multiple impacts.- 6.5.1 Introduction.- 6.5.2 The rocking block example continued.- 6.5.3 Additional comments and studies.- 6.5.4 3-balls example continued.- 6.5.5 2-balls.- 6.5.6 Additional comments and studies.- 6.5.7 Summary of the main ideas.- 6.5.8 Collisions near singularities: additional comments.- 6.6 Constraints with Amontons-Coulomb friction.- 6.6.1 Lamina with friction.- 6.7 Additional comments and studies.- 7 Stability of nonsmooth dynamical systems.- 7.1 General stability concepts.- 7.1.1 Stability of measure differential equations.- 7.1.2 Stability of mechanical systems with unilateral constraints.- 7.1.3 Passivity of the collision mapping.- 7.1.4 Stability of the discrete dynamic equations.- 7.1.5 Impact oscillators.- 7.1.6 Conclusions.- 7.2 Grazing orC-bifurcations.- 7.2.1 The stroboscopic Poincaré map discontinuities.- 7.2.2 The stroboscopic Poincaré map around grazing-motions...- 7.2.3 Further comments and studies.- 7.3 Stability: from compliant to rigid models.- 7.3.1 System’s dynamics.- 7.3.2 Lyapunov stability analysis.- 7.3.3 Analysis of quadratic stability conditions for large stiffness values.- 7.3.4 A stiffness independent convergence analysis.- 8 Feedback control.- 8.1 Controllability properties.- 8.2 Control of complete robotic tasks.- 8.2.1 Experimental control of the transition phase.- 8.2.2 The general control problem.- 8.3 Dynamic model.- 8.3.1 A general form of the dynamical system.- 8.3.2 The closed-loop formulation of the dynamics.- 8.3.3 Definition of the solutions.- 8.4 Stability analysis framework.- 8.5 A one degree-of-freedom example.- 8.5.1 Static state feedback (weakly stable task).- 8.5.2 Towards a strongly stable closed-loop scheme.- 8.5.3 Dynamic state feedback.- 8.6ndegree-of-freedom rigid manipulators.- 8.6.1 Integrable transformed velocities.- 8.6.2 Examples.- 8.6.3 Non-integrable transformed velocities: general case.- 8.6.4 Non-integrable transformed velocities: a strongly stable scheme.- 8.7 Complementary-slackness juggling systems.- 8.7.1 Some examples.- 8.7.2 Some controllability properties.- 8.7.3 Control design.- 8.7.4 Further comments.- 8.8 Systems with dynamic backlash.- 8.9 Bipedal locomotion.- A Schwartz’ distributions.- A.1 The functional approach.- A.2 The sequential approach.- A.3 Notions of convergence.- B Measures and integrals.- C Functions of bounded variation in time.- C.1 Definition and generalities.- C.2 Spaces of functions of bounded variation.- C.3 Sobolev spaces.- D Elements of convex analysis.

In addition to having served (1991 – 2001) as Chargé de Recherche at CNRS, and as, now, Directeur de Recherche at INRIA, Bernard Brogliato is an Associate Editor for Automatica (since 2001) a reviewer for Mathematical Reviews and writes book reviews for ASME Applied Mechanics Reviews. He has served on the organising and other committees of various European and international conferences sponsored by an assortment of organizations, most prominently, the IEEE. He has been responsible for examining the PhD and Habilitation theses of 16 students and takes an active part in lecturing at summer schools in several European countries. Doctor Brogliato is the director of SICONOS (a European project concerned with Modelling, Simulation and Control of Nonsmooth Dynamical Systems) which carries funding of €2 million.

This significantly enlarged and expanded second edition focuses on a class of nonsmooth hybrid dynamical systems, namely finite-dimensional mechanical systems subject to unilateral constraints. It contains a complete overview of the main problems in mathematics, mechanics, stability and control which are of interest in this field. The following topics are discussed in detail and are illustrated with examples:

• shock dynamics;

• multiple impacts;

• feedback control;

• Moreau's sweeping process; and

• complementarity formulations.

With a comprehensive bibliography of over a thousand references, Nonsmooth Dynamics is an indispensable source of information on impact phenomena and rigid-body dynamics.

Praise for the first edition:

The presentation is excellent in combining rigorous mathematics with a great number of examples ranging from simple mechanical systems to robotic systems allowing the reader to understand the basic concepts.

Mathematical Abstracts

It is written with clarity, contains the latest research results in the area of impact problems for rigid bodies and is recommended for both applied mathematicians and engineers.

Mathematical Reviews

Brogliato, Bernard In addition to having served (1991 a" 2001) as Cha... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia