• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches

ISBN-13: 9780471483502 / Angielski / Twarda / 2006 / 400 str.

Hulin Wu; Jin-Ting Zhang
Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches Wu, Hulin 9780471483502 Wiley-Interscience - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches

ISBN-13: 9780471483502 / Angielski / Twarda / 2006 / 400 str.

Hulin Wu; Jin-Ting Zhang
cena 687,77 zł
(netto: 655,02 VAT:  5%)

Najniższa cena z 30 dni: 680,74 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Incorporates mixed-effects modeling techniques for more powerful and efficient methods

This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented.

With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques.

The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis.

Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices.

With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Wiley-Interscience
Seria wydawnicza:
Wiley Series in Probability and Statistics
Język:
Angielski
ISBN-13:
9780471483502
Rok wydania:
2006
Numer serii:
000033279
Ilość stron:
400
Waga:
0.68 kg
Wymiary:
23.62 x 16.15 x 2.26
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

"The authors should be congratulated for their contribution a nice addition to the personal collection of any statistician." ( Journal of the American Statistical Association, June 2007)

"...can serve as a textbook for both undergraduate and graduate students. Also it will help researchers in this area [because of its] comprehensive coverage of the materials." (Mathematical Reviews, 2007b)

" an excellent survey of many of the nonparametric regression techniques used in longitudinal studies highly recommended." (CHOICE, October 2006)

Preface.

Acronyms.

1. Introduction.

2. Parametric Mixed–Effects Models.

3. Nonparametric Regression Smoothers.

4. Local Polynomial Methods.

5. Regression Spline Methods.

6. Smoothing Splines Methods.

7. Penalized Spline Methods.

8. Semiparametric Models.

9. Time–Varying Coefficient Models.

10. Discrete Longitudinal Data.

References.

Index.

HULIN WU, PHD, is Professor of Biostatistics in the School of Medicine and Dentistry at the University of Rochester in the Departments of Medicine; Community and Preventative Medicine; and Biostatistics and Computational Biology. His research interests include longi–tudinal data, HIV/AIDS modeling, biomedical informatics, and clinical trials.

JIN–TING ZHANG, PHD, is Assistant Professor in the Department of Statistics and Applied Probability at the National University of Singapore. His research interests include nonparametric regression and density estimation, nonparametric mixed–effects modeling, functional data analysis, and longitudinal data analysis, among others.

Incorporates mixed–effects modeling techniques for more powerful and efficient methods

This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed–effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented.

With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed–effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques.

The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis.

Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices.

With its focus on solving problems, this is an excellent textbook for upper–level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real–world problems.

Wu, Hulin HULIN WU, PHD, is Professor of Biostatistics in th... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia