• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives

ISBN-13: 9780471349112 / Angielski / Twarda / 2001 / 312 str.

Simon Haykin; Irwin W. Sandberg; James T. Lo
Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives Haykin, Simon 9780471349112 Wiley-Interscience - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives

ISBN-13: 9780471349112 / Angielski / Twarda / 2001 / 312 str.

Simon Haykin; Irwin W. Sandberg; James T. Lo
cena 809,34 zł
(netto: 770,80 VAT:  5%)

Najniższa cena z 30 dni: 802,70 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The first truly up-to-date look at the theory and capabilities of nonlinear dynamical systems that take the form of feedforward neural network structures
Considered one of the most important types of structures in the study of neural networks and neural-like networks, feedforward networks incorporating dynamical elements have important properties and are of use in many applications. Specializing in experiential knowledge, a neural network stores and expands its knowledge base via strikingly human routes-through a learning process and information storage involving interconnection strengths known as synaptic weights.
In Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, six leading authorities describe recent contributions to the development of an analytical basis for the understanding and use of nonlinear dynamical systems of the feedforward type, especially in the areas of control, signal processing, and time series analysis. Moving from an introductory discussion of the different aspects of feedforward neural networks, the book then addresses:
* Classification problems and the related problem of approximating dynamic nonlinear input-output maps
* The development of robust controllers and filters
* The capability of neural networks to approximate functions and dynamic systems with respect to risk-sensitive error
* Segmenting a time series
It then sheds light on the application of feedforward neural networks to speech processing, summarizing speech-related techniques, and reviewing feedforward neural networks from the viewpoint of fundamental design issues. An up-to-date and authoritative look at the ever-widening technical boundaries and influence of neural networks in dynamical systems, this volume is an indispensable resource for researchers in neural networks and a reference staple for libraries.

Kategorie:
Technologie
Kategorie BISAC:
Computers > Data Science - Neural Networks
Technology & Engineering > Electrical
Wydawca:
Wiley-Interscience
Seria wydawnicza:
Adaptive and Learning Systems for Signal Processing, Communi
Język:
Angielski
ISBN-13:
9780471349112
Rok wydania:
2001
Numer serii:
000000159
Ilość stron:
312
Waga:
0.59 kg
Wymiary:
22.1 x 15.29 x 2.16
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

" an interesting book, useful for researchers in network theory " ( Dynamical Systems Magazine, July 2006)

Preface.

1 Feedforward Neural Networks: An Introduction (Simon Haykin).

1.1 Supervised Learning.

1.2 Unsupervised Learning.

1.3 Temporal Processing Using Feedforward Networks.

1.4 Concluding Remarks.

2 Uniform Approximation and Nonlinear Network Structures (Irwin W. Sandberg).

2.1 Introduction.

2.2 General Structures for Classification.

2.3 Myopic Maps, Neural Network Approximations, and Volterra Series.

2.4 Separation Conditions and Approximation of Discrete–Time and Discrete–Space Systems.

2.5 Concluding Comments.

2.6 Appendices.

3 Robust Neural Networks (James T. Lo).

3.1 Introduction.

3.2 Preliminaries.

3.3 General Risk–Sensitive Functionals.

3.4 Approximation of Functions by MLPs.

3.5 Approximation of Functions by RBFs.

3.6 Formulation of Risk–Sensitive Identification of Systems.

3.7 Series–Parallel Identification by Artificial Neural Networks (ANNs).

3.8 Paral lel Identification of ANNs.

3.9 Conclusion.

4 Modeling, Segmentation, and Classification of Nonlinear Nonstationary Time Series (Craig L. Fancourt and Jose C. Principe).

4.1 Introduction.

4.2 Supervised Sequential Change Detection.

4.3 Unsupervised Sequential Segmentation.

4.4 Memoryless Mixture Models.

4.5 Mixture Models for Processes with Memory.

4.6 Gated Competitive Experts.

4.7 Competitive Temporal Principal Component Analysis.

4.8 Output–Based Gating Algorithms.

4.9 Other Approaches.

4.10 Conclusions.

5 Application of Feedforward Networks to Speech (Shigeru Katagiri).

5.1 Introduction.

5.2 Fundamentals of Speech Signals and Processing Technologies.

5.3 Fundamental Issues of ANN Design.

5.4 Speech Recognition.

5.5 Applications to Other Types of Speech Processing.

5.6 Concluding Remarks.

Index.

IRWIN W. SANDBERG is a chaired professor at the University of Texas at Austin.

JAMES T. LO teaches in the Department of Mathematics and Statistics, University of Maryland.

CRAIG L. FANCOURT is a member of the Adaptive Image and Signal Processing Group at the Sarnoff Corp. in Princeton, New Jersey.

JOSE C. PRINCIPE is BellSouth Professor in the Electrical and Computer Engineering Department at the University of Florida, Gainesville.

SHIGERU KATAGIRI leads research on speech and hearing at NTT Communication Science Laboratories, Kyoto, Japan.

SIMON HAYKIN teaches at McMaster University in Hamilton, Ontario, Canada. He has authored or coauthored over a dozen Wiley titles.

The first truly up–to–date look at the theory and capabilities of nonlinear dynamical systems that take the form of feedforward neural network structures

Considered one of the most important types of structures in the study of neural networks and neural–like networks, feedforward networks incorporating dynamical elements have important properties and are of use in many applications. Specializing in experiential knowledge, a neural network stores and expands its knowledge base via strikingly human routes–through a learning process and information storage involving interconnection strengths known as synaptic weights.

In Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, six leading authorities describe recent contributions to the development of an analytical basis for the understanding and use of nonlinear dynamical systems of the feedforward type, especially in the areas of control, signal processing, and time series analysis. Moving from an introductory discussion of the different aspects of feedforward neural networks, the book then addresses:
∗ Classification problems and the related problem of approximating dynamic nonlinear input–output maps
∗ The development of robust controllers and filters
∗ The capability of neural networks to approximate functions and dynamic systems with respect to risk–sensitive error
∗ Segmenting a time series

It then sheds light on the application of feedforward neural networks to speech processing, summarizing speech–related techniques, and reviewing feedforward neural networks from the viewpoint of fundamental design issues. An up–to–date and authoritative look at the ever–widening technical boundaries and influence of neural networks in dynamical systems, this volume is an indispensable resource for researchers in neural networks and a reference staple for libraries.

Haykin, Simon SIMON HAYKIN, PhD, is Distinguished University Pro... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia