• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2944077]
• Literatura piękna
 [1814251]

  więcej...
• Turystyka
 [70679]
• Informatyka
 [151074]
• Komiksy
 [35590]
• Encyklopedie
 [23169]
• Dziecięca
 [611005]
• Hobby
 [136031]
• AudioBooki
 [1718]
• Literatura faktu
 [225599]
• Muzyka CD
 [379]
• Słowniki
 [2916]
• Inne
 [443741]
• Kalendarze
 [1187]
• Podręczniki
 [166463]
• Poradniki
 [469211]
• Religia
 [506887]
• Czasopisma
 [481]
• Sport
 [61343]
• Sztuka
 [242115]
• CD, DVD, Video
 [3348]
• Technologie
 [219293]
• Zdrowie
 [98602]
• Książkowe Klimaty
 [124]
• Zabawki
 [2385]
• Puzzle, gry
 [3504]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7151]
Kategorie szczegółowe BISAC

Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects

ISBN-13: 9781118855287 / Angielski / Twarda / 2015 / 432 str.

Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects  9781118855287 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects

ISBN-13: 9781118855287 / Angielski / Twarda / 2015 / 432 str.

cena 556,53
(netto: 530,03 VAT:  5%)

Najniższa cena z 30 dni: 549,74
Termin realizacji zamówienia:
ok. 30 dni roboczych.

Darmowa dostawa!

A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features:

  • Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area
  • An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory
  • Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics
An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.

Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Science > Fizyka matematyczna
Science > Dynamika
Mathematics > Matematyka stosowana
Wydawca:
John Wiley & Sons
Język:
Angielski
ISBN-13:
9781118855287
Rok wydania:
2015
Ilość stron:
432
Waga:
0.72 kg
Wymiary:
23.62 x 16.0 x 2.79
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Glosariusz/słownik
Wydanie ilustrowane

Preface xvii

Acronyms xix

Glossary xxi

Symbols xxiii

Introduction 1
F. Bagarello, J.P. Gazeau, F. Szafraniec, and M. Znojil

References 5

1 Non–Self–Adjoint Operators in Quantum Physics: Ideas, People, and Trends 7
Miloslav Znojil

1.1 The Challenge of Non–Hermiticity in Quantum Physics 7

1.2 A Periodization of the Recent History of Study of Non–Self–Adjoint Operators in Quantum Physics 11

1.3 Main Message: New Classes of Quantum Bound States 18

1.4 Probabilistic Interpretation of the New Models 29

1.5 Innovations in Mathematical Physics 34

1.6 Scylla of Nonlocality or Charybdis of Nonunitarity? 37

1.7 Trends 45

References 50

2 Operators of the Quantum Harmonic Oscillator and Its Relatives 59
Franciszek Hugon Szafraniec

2.1 Introducing to Unbounded Hilbert Space Operators 60

2.2 Commutation Relations 88

2.3 The q Oscillators 106

2.4 Back to Hermicity A Way to See It 113

Concluding Remarks 115

References 115

3 Deformed Canonical (Anti–)Commutation Relations and Non–Self–Adjoint Hamiltonians 121
Fabio Bagarello

3.1 Introduction 121

3.2 The Mathematics of D–PBs 123

3.3 D–PBs in Quantum Mechanics 145

3.4 Other Appearances of D–PBs in Quantum Mechanics 158

3.5 A Much Simpler Case: Pseudo–Fermions 174

3.6 A Possible Extension: Nonlinear D–PBs 182

3.7 Conclusions 184

3.8 Acknowledgments 185

References 185

4 Criteria for the Reality of the Spectrum of PT –Symmetric Schrödinger Operators and for the Existence of PT –Symmetric Phase Transitions 189
Emanuela Caliceti and Sandro Graffi

4.1 Introduction 189

4.2 Perturbation Theory and Global Control of the Spectrum 191

4.3 One–Dimensional PT –Symmetric Hamiltonians: Criteria for the Reality of the Spectrum 194

4.4 PT –Symmetric Periodic Schrödinger Operators with Real Spectrum 200

4.5 An Example of PT –Symmetric Phase Transition 206

4.6 The Method of the Quantum Normal Form 219

Appendix: Moyal Brackets and theWeyl Quantization 232

A.1 Moyal Brackets 232

A.2 The Weyl Quantization 236

References 238

5 Elements of Spectral Theory without the Spectral Theorem 241
David Krejèiøík and Petr Siegl

5.1 Introduction 241

5.2 Closed Operators in Hilbert Spaces 242

5.3 How to Whip Up a Closed Operator 257

5.4 Compactness and a Spectral Life Without It 266

5.5 Similarity to Normal Operators 273

5.6 Pseudospectra 281

References 288

6 PT –Symmetric Operators in Quantum Mechanics: Krein Spaces Methods 293
Sergio Albeverio and Sergii Kuzhel

6.1 Introduction 293

6.2 Elements of the Krein Spaces Theory 295

6.3 Self–Adjoint Operators in Krein Spaces 304

6.4 Elements of PT –Symmetric Operators Theory 320

References 340

7 Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces 345
Jean–Pierre Antoine and Camillo Trapani

7.1 Introduction 345

7.2 Some Terminology 347

7.3 Similar and Quasi–Similar Operators 349

7.4 The Lattice Generated by a Single Metric Operator 362

7.5 Quasi–Hermitian Operators 367

7.6 The LHS Generated by Metric Operators 380

7.7 Similarity for PIP–Space Operators 382

7.8 The Case of Pseudo–Hermitian Hamiltonians 389

7.9 Conclusion 392

Appendix: Partial Inner Product Spaces 392

A.1 PIP–Spaces and Indexed PIP–Spaces 392

A.2 Operators on Indexed PIP–space S 395

A.2.1 Symmetric Operators 396

A.2.2 Regular Operators, Morphisms, and Projections 397

References 399

Index 403

Fabio Bagarello, PhD, is Professor in the Department of Energy, Information Engineering, and Mathematical Models at the University of Palermo, Italy. Dr. Bagarello is the author of over 160 journal articles and Quantum Dynamics for Classical Systems: With Applications of the Number Operator, also published by Wiley.

Jean Pierre Gazeau, PhD, is Emeritus Professor of Physics in the Laboratory of Astroparticles and Cosmology at the University Paris Diderot, France.  Dr. Gazeau is the author of over 200 journal articles and two books, including Coherent States in Quantum Physics, also published by Wiley.

Franciszek Hugon Szafraniec, Prof. Dr hab., is a retired professor from the Jagiellonian University in Kraków, Poland. He remains an active researcher in functional analysis, and his research interests include operator theory, harmonic analysis, complex function theory, and mathematical foundations of quantum physics. Dr. Szafraniec is also an authority on reproducing kernel Hilbert spaces.

Miloslav Znojil, DrSc, is Leading Research Worker at the Nuclear Physics Institute of the Czech Academy of Sciences and the Deputy Director of the Doppler Institute for Mathematical Physics and Applied Mathematics in the Czech Republic. Dr. Znojil is the author of over 300 journal articles and a member of the Czech Union of Mathematicians and Physicists.

A unique discussion of mathematical methods with applications to quantum mechanics

Non–Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non–adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses recent emergence of the unboundedness of metric operators, which is a serious issue in the study of parity–time–symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis, with potentially significant physical consequences. In addition to prompting a discussion of the role of mathematical methods in the contemporary development of quantum physics, the book features:
  • Chapter contributions written by well–known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area
  • An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non–selfadjoint operators as well as the use of Krein space theory and pertubation theory
  • Rigorous support of the progress in theoretical physics of non–Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics, condensed matter physics

An ideal reference, Non–Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate–level and/or PhD–level text for courses on quantum mechanics and mathematical models in physics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia