• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Non-Homogeneous Boundary Value Problems and Applications: Volume II » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Non-Homogeneous Boundary Value Problems and Applications: Volume II

ISBN-13: 9783642652196 / Angielski / Miękka / 2011 / 244 str.

Jacques Louis Lions; Enrico Magenes; P. Kenneth
Non-Homogeneous Boundary Value Problems and Applications: Volume II Lions, Jacques Louis 9783642652196 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Non-Homogeneous Boundary Value Problems and Applications: Volume II

ISBN-13: 9783642652196 / Angielski / Miękka / 2011 / 244 str.

Jacques Louis Lions; Enrico Magenes; P. Kenneth
cena 484,18
(netto: 461,12 VAT:  5%)

Najniższa cena z 30 dni: 462,63
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

I. In this second volume, we continue at first the study of non homogeneous boundary value problems for particular classes of evolu tion equations. 1 In Chapter 4, we study parabolic operators by the method of Agranovitch-Vishik lJ; this is step (i) (Introduction to Volume I, Section 4), i.e. the study of regularity. The next steps: (ii) transposition, (iii) interpolation, are similar in principle to those of Chapter 2, but involve rather considerable additional technical difficulties. In Chapter 5, we study hyperbolic operators or operators well defined in thesense of Petrowski or Schroedinger. Our regularity results (step (i)) seem to be new. Steps (ii) and (iii) are all3.logous to those of the parabolic case, except for certain technical differences. In Chapter 6, the results of Chapter'> 4 and 5 are applied to the study of optimal control problems for systems governed by evolution equations, when the control appears in the boundary conditions (so that non-homogeneous boundary value problems are the basic tool of this theory). Another type of application, to the characterization of "all" well-posed problems for the operators in question, is given in the Ap pendix. Still other applications, for example to numerical analysis, will be given in Volume 3."

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Systemy liczbowe
Mathematics > Mathematical Analysis
Mathematics > Równania różniczkowe
Wydawca:
Springer
Seria wydawnicza:
Grundlehren Der Mathematischen Wissenschaften
Język:
Angielski
ISBN-13:
9783642652196
Rok wydania:
2011
Wydanie:
Softcover Repri
Numer serii:
000454842
Ilość stron:
244
Waga:
0.41 kg
Wymiary:
15.4 x 23.8 x 1.3
Oprawa:
Miękka
Wolumenów:
01

4 Parabolic Evolution Operators. Hilbert Theory.- 1. Notation and Hypotheses. First Regularity Theorem.- 1.1 Notation.- 1.2 Statement of the Problems.- 1.3 (Formal) Green’s Formulas.- 1.4 First Existence and Uniqueness Theorem (Statement).- 1.5 Orientation.- 2. The Spaces Hr, s(Q). Trace Theorems. Compatibility Relations.- 2.1 Hr, s-Spaces.- 2.2 First Trace Theorem.- 2.3 Local Compatibility Relations.- 2.4 Global Compatibility Relations for a Particular Case.- 2.5 General Compatibility Relations.- 3. Evolution Equations and the Laplace Transform.- 3.1 Vector Distribution Solutions.- 3.2 L2-Solutions.- 4. The Case of Operators Independent of t.- 4.1 Hypotheses.- 4.2 Basic Inequalities.- 4.3 Solution of the Problem.- 5. Regularity.- 5.1 Preliminaries.- 5.2 Basic Inequalities.- 5.3 An Abstract Result.- 5.4 Solution of the Boundary Value Problem.- 6. Case of Time-Dependent Operators. Existence of Solutions in the Spaces H2r m, m(Q), Real r ? 1.- 6.1 Hypotheses. Statement of the Result.- 6.2 Local Result in t.- 6.3 Proof of Theorem 6.1.- 6.4 Regular Non-Homogeneous Problems.- Adjoint Isomorphism of Order r.- 7.1 The Adjoint Problem.- 7.2 Adjoint Isomorphism of Order r.- 8. Transposition of the Adjoint Isomorphism of Order r. (I): Generalities.- 8.1 Transposition.- 8.2 Orientation.- 8.3 The Spaces H??, ??(Q), H??, ??(?), ?, ? ? 0.- 8.4 (Formal) Choice of L.- 9. Choice of f. The Spaces ?2rm,r(Q).- 9.1 The Space ?2rm,r(Q).- 9.2 The Space ??2rm,?r(Q).- 9.3 Choice of f. The Space D?(r?1)(P)(Q).- 10. Trace Theorems for the Spaces D?(r?1)(P)(Q), r ? 1.- 10.1 Density Theorem.- 10.2 Trace Theorem on ?.- 10.3 Continuity of the Trace on Surfaces Neighbouring ?.- 10.4 Trace Theorem on ?0.- 10.5 Continuity of the Trace on Sections Neighbouring ?.- 11. Choice of gj and uo. The Spaces H2?m ??(?).- 11.1 The Spaces H2?m ??(?).- 11.2 Choice of gj.- 11.3 Choice of uo.- 12. Transposition of the Adjoint Isomorphism of Order ?. (II): Results; Existence of Solutions in H2mr,r(Q)-Spaces, Real r ? 0.- 12.1 Final Choice of L.- 12.2 Results.- 12.3 Complements.- 13. State of the Problem. Complements on the Transposition of the Adjoint Isomorphism of Order 1.- 13.1 State of the Problem.- 13.2 Complements on the Transposition of the Adjoint Isomorphism of Order 1.- 13.3 Orientation.- 14. Some Interpolation Theorems.- 14.1 Notation. Statement of the Main Result.- 14.2 Outline of the Proof.- 14.3 First Auxiliary Interpolation Theorem.- 14.4 Second Auxiliary Interpolation Theorem.- 14.5 Third Auxiliary Interpolation Theorem.- 14.6 Proof of Theorem 14.1.- 15. Final Results; Existence of Solutions in the Spaces H2mr,r(Q), 0 < r < 1. Applications.- 15.1 Application of the Results of Section 14.- 15.2 Examples; Generalities.- 15.3 Examples (I).- 15.4 Examples (II).- 15.5 Some Complements on the Dirichlet Problem.- 16. Comments.- 17. Problems.- 5 Hyperbolic Evolution Operators, of Petrowski and of Schroedinger. Hilbert Theory.- 1. Application of the Results of Chapter 3 and General Remarks.- 1.1 Notation. Hypotheses.- 1.2 Application of the Results of Chapter 3.- 1.3 A Counter-Example.- 2. A Regularity Theorem (I).- 3. Regular Non-Homogeneous Problems.- 3.1 Statement of the Problem.- 3.2 The Compatibility Relations.- 3.3 The Case of the Dirichlet Problem.- 4. Transposition.- 4.1 Adjoint Isomorphism.- 4.2 Transposition.- 4.3 Choice of L.- 4.4 Conclusion.- 5. Interpolation.- 5.1 Statement of the Problem.- 5.2 Some Interpolation Results.- 5.3 Consequences.- 5.4 The Case of the Dirichlet Problem.- 6. Applications and Examples.- 6.1 General Results.- 6.2 Examples.- 7. Regularity Theorem (II).- 7.1 Statement.- 7.2 Proof of Theorem 7.1.- 8. Non-Integer Order Regularity Theorem.- 8.1 Orientation.- 8.2 Interpolation in r.- 8.3 Interpretation of the Space V(2r?1)m,2r(Q), r ? 1.- 9. Adjoint Isomorphism of Order r and Transposition.- 9.1 Adjoint Isomorphism of Order r.- 9.2 Transposition.- 9.3 Formal Choice of L.- 10. Choice of f, $$ \vec g $$, u0, u1.- 10.1 Choice of f.- 10.2 The Space $$ D_{A + D_t^2}^{ - \left( {2r - 1} \right)}\left( Q \right) $$.- 10.3 Choice of gj.- 10.4 Choice of u0, u1.- 10.5 Conclusion.- 11. Trace Theorems in the Space $$ D_{A + D_t^2}^{ - \left( {2r - 1} \right)}\left( Q \right) $$.- 11.1 Density Theorem.- 11.2 Traces on ?.- 11.3 Continuity of the Trace on Neighbouring Surfaces.- 11.4 Traces on ?0.- 11.5 Continuity of the Trace on Sections Neighbouring ?0.- 11.6 Remark.- 12. Schroedinger Type Equations.- 12.1 Notation.- 12.2 First Regularity Theorem. Parabolic Regularization.- 12.3 Second Regularity Theorem.- 12.4 r-Isomorphism Theorem.- 12.5 Choice of L.- 12.6 Trace Theorem.- 13. Comments.- 14. Problems.- 6 Applications to Optimal Control Problems.- 1. Statement of the Problems for the Linear Parabolic Case.- 1.1 Notation.- 1.2 Optimization Problems.- 2. Choice of the Norms in the Cost Function.- 2.1 Reminder. Condition on K1(Q).- 2.2 Space Described by $$ \vec S\,y $$. Conditions on K2(?).- 2.3 Space Described by y(x, T; u). Condition on K3(?).- 3. Optimality Condition for Quadratic Cost Functions.- 3.1 Notation.- 3.2 Optimality Condition.- 4. Optimality Condition and Green’s Formula.- 4.1 Optimality Condition. Application of Section 3.2.- 4.2 The Isomorphisms ?i.- 4.3 The “Adjoint” Problem.- 4.4 New Form of the Optimality Condition.- 5. The Particular Case $$ \mu \,\, = \,\,m\,\, + \,\,\frac $$, E3 ? 0.- 5.1 Properties of y.- 5.2 Choice of K1(Q).- 5.3 Choice of K2(?) and K3(?).- 5.4 Adjoint Problem and Optimality Condition.- 6. Consequences of the Optimality Condition (I).- 6.1 Generalities.- 6.2 Consequences of Theorem 6.1.- 7. Consequences of the Optimality Condition (II).- 7.1 Additional Hypotheses.- 7.2 Optimality Condition.- 8. Complements on the Choice of the Spaces Ki.- 8.1 Orientation.- 8.2 Choice of K1(Q).- 8.3 Choice of K2(?).- 8.4 Choice of K3(?).- 9. Examples.- 10. Non-Parabolic Cases. Statement of the Problems. Generalities.- 10.1 Notation.- 10.2 Cost Function.- 10.3 Optimality Condition (I).- 10.4 Adjoint Problem.- 10.5 Green’s Formula.- 10.6 Optimality Condition (II).- 10.7 Consequences.- 11. Applications. Examples.- 11.1 Control in the Boundary Conditions.- 11.2 Choice of K1.- 11.3 Choice of K2.- 11.4 Examples.- 12. Comments.- 13. Problems.- Boundary Value Problems and Operator Extensions.- 1. Statement of the Problem. Well-Posed Spaces.- 1.1 Notation.- 2. Abstract Boundary Conditions.- 2.1 Boundary Spaces and Operators.- 2.2 Characterization of Well-Posed Spaces.- 3. Example 1. Elliptic Operators.- 3.1 Notation.- 3.2 The Boundary Operators and Spaces.- 3.3 Consequences.- 3.4 Various Remarks.- 4. Example 2. Parabolic Operators.- 4.1 Notation.- 4.2 The Boundary Operators and Spaces.- 4.3 Consequences.- 5.1 Notation.- 5.2 Formal Results.- 6. Comments and Problems.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia