Introduction.- Buckling of Ellipsoidal Heads.- Plastic Collapse of Ellipsoidal Heads.- New Method for Design of Ellipsoidal Heads.- Control of Fabrication Quality of Ellipsoidal Heads.- Summary.
Prof. Jinyang Zheng’s career in hydrogen energy and pressure equipment has spanned 29 years. After graduation from Zhejiang University (ZJU), China, with Ph.D. in 1992, he joined the Institute of Process Equipment of ZJU, and became a professor in 1997 and Chang Jiang Scholars Distinguished Professor in 2012. As a visiting scholar, he worked in the Oak Ridge National Lab, USA, from August 1999 to August 2000, and the University of Manchester in UK from October 2002 to January 2003. Currently, he is the vice chair of ISO/TC197 Hydrogen Technologies, president of IAHE Code and Standards Division, vice chair of the National Standardization Technical Committee of Hydrogen Energy (SAC/TC309) and president of Engineering Research Center for High Pressure Process Equipment and Safety of the Ministry of Education, China.
Prof. Zheng has been specializing in hydrogen storage and transportation, high pressure technology, cryogenic vessels, and pressure equipment under dynamic loading. Under support of more than 20 projects including the National Key Basic Research Program of China (973 Program), the National Key Research & Development Program of China, the National High-tech Research and Development Projects of China (863 Program) and the National Natural Science Foundation of China, he acquired a number of important and innovative achievements in high pressure hydrogen storage, hydrogen safety, steel ribbon or fiber wound pressure equipment, polyethylene pipeline, lightweight cryogenic vessels and explosion containment vessels. He is the author of 355 peer-reviewed papers and 13 books including 5 textbooks, the inventor of 90 patents and the receiver of 12 awards from government as well as industry federation. He is also responsible for the development of 2 Chinese regulations on pressure vessels and 11 Chinese standards on hydrogen energy.
Keming Li received his Ph.D. in Process Equipment in September 2019 from Zhejiang University, China. Since October 2019, Dr. Li has been in College of Energy Engineering, Zhejiang University, as a postdoctoral researcher. His recent research interests include theory of failure (e.g., buckling, plastic collapse, fatigue, etc.), and design method and fabrication quality control of pressure vessels. He was awarded by the ASME Pressure Vessels & Piping Division in recognition for being a finalist (Ph.D. Category) in the 24th annual student paper competition at the 2016 ASME Pressure Vessels & Piping Conference. He was also awarded the fellowship of China Postdoctoral Science Foundation in 2020.
This book is the first monograph focusing on ellipsoidal heads, which are commonly used as an end closure of pressure vessels in chemical, petroleum, nuclear, marine, aerospace and food processing industries. It provides a comprehensive coverage of stress, failure, design and fabrication of ellipsoidal heads. This book investigates in detail buckling/plastic collapse behaviors of ellipsoidal heads using nonlinear finite element methods and experiments. Buckling/plastic collapse experiments are performed on 37 ellipsoidal heads which cover various geometric parameters, material and fabrication methods. In particular, modern measurement technologies, such as 3D laser scanning, are used in the experiments of these ellipsoidal heads including large heads with a diameter up to 5 metres. Moreover, this book presents new formulas for accurate prediction of buckling/plastic collapse pressures of ellipsoidal heads. Using elastic-plastic theory, this book proposes a new failure mechanism-based method for design of ellipsoidal heads. Compared to other methods in current codes and standards based on elastic or perfectly plastic theory, the new design method can fully develop the head’s load-carrying capacity, which reduces head thickness and thus cost. Also, this book studies control on fabrication quality of ellipsoidal heads, including shape deviation, forming strain and forming temperature. It is useful as a technical reference for researchers and engineers in the fields of engineering mechanics, engineering design, manufacturing engineering and industrial engineering.