• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Neural Networks and Analog Computation: Beyond the Turing Limit » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Neural Networks and Analog Computation: Beyond the Turing Limit

ISBN-13: 9780817639495 / Angielski / Twarda / 1998 / 181 str.

Hava Siegelman;Siegelman
Neural Networks and Analog Computation: Beyond the Turing Limit Siegelmann, Hava T. 9780817639495 Birkhauser - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Neural Networks and Analog Computation: Beyond the Turing Limit

ISBN-13: 9780817639495 / Angielski / Twarda / 1998 / 181 str.

Hava Siegelman;Siegelman
cena 605,23 zł
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Machine Theory
Mathematics > Matematyka stosowana
Computers > Data Science - Neural Networks
Wydawca:
Birkhauser
Seria wydawnicza:
Progress in Theoretical Computer Science
Język:
Angielski
ISBN-13:
9780817639495
Rok wydania:
1998
Wydanie:
1999
Numer serii:
000019249
Ilość stron:
181
Waga:
0.45 kg
Wymiary:
24.64 x 16.15 x 1.52
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

"All of the three primary questions are considered: What computational models can the net simulate (within polynomial bounds)? What are the computational complexity classes that are relevant to the net? How does the net (which, after all, is an analog device) relate to Church's thesis? Moreover the power of the basic model is also analyzed when the domain of reals is replaced by the rationals and the integers."

-Mathematical Reviews

"Siegelmann's book focuses on the computational complexities of neural networks and making this research accessible...the book accomplishes the said task nicely."

---SIAM Review, Vol. 42, No 3.

1 Computational Complexity.- 1.1 Neural Networks.- 1.2 Automata: A General Introduction.- 1.2.1 Input Sets in Computability Theory.- 1.3 Finite Automata.- 1.3.1 Neural Networks and Finite Automata.- 1.4 The Turing Machine.- 1.4.1 Neural Networks and Turing Machines.- 1.5 Probabilistic Turing Machines.- 1.5.1 Neural Networks and Probabilistic Machines.- 1.6 Nondeterministic Turing Machines.- 1.6.1 Nondeterministic Neural Networks.- 1.7 Oracle Turing Machines.- 1.7.1 Neural Networks and Oracle Machines.- 1.8 Advice Turing Machines.- 1.8.1 Circuit Families.- 1.8.2 Neural Networks and Advice Machines.- 1.9 Notes.- 2 The Model.- 2.1 Variants of the Network.- 2.1.1 A “System Diagram” Interpretation.- 2.2 The Network’s Computation.- 2.3 Integer Weights.- 3 Networks with Rational Weights.- 3.1 The Turing Equivalence Theorem.- 3.2 Highlights of the Proof.- 3.2.1 Cantor-like Encoding of Stacks.- 3.2.2 Stack Operations.- 3.2.3 General Construction of the Network.- 3.3 The Simulation.- 3.3.1 P-Stack Machines.- 3.4 Network with Four Layers.- 3.4.1 A Layout Of The Construction.- 3.5 Real-Time Simulation.- 3.5.1 Computing in Two Layers.- 3.5.2 Removing the Sigmoid From the Main Layer.- 3.5.3 One Layer Network Simulates TM.- 3.6 Inputs and Outputs.- 3.7 Universal Network.- 3.8 Nondeterministic Computation.- 4 Networks with Real Weights.- 4.1 Simulating Circuit Families.- 4.1.1 The Circuit Encoding.- 4.1.2 A Circuit Retrieval.- 4.1.3 Circuit Simulation By a Network.- 4.1.4 The Combined Network.- 4.2 Networks Simulation by Circuits.- 4.2.1 Linear Precision Suffices.- 4.2.2 The Network Simulation by a Circuit.- 4.3 Networks versus Threshold Circuits.- 4.4 Corollaries.- 5 Kolmogorov Weights: Between P and P/poly.- 5.1 Kolmogorov Complexity and Reals.- 5.2 Tally Oracles and Neural Networks.- 5.3 Kolmogorov Weights and Advice Classes.- 5.4 The Hierarchy Theorem.- 6 Space and Precision.- 6.1 Equivalence of Space and Precision.- 6.2 Fixed Precision Variable Sized Nets.- 7 Universality of Sigmoidal Networks.- 7.1 Alarm Clock Machines.- 7.1.1 Adder Machines.- 7.1.2 Alarm Clock and Adder Machines.- 7.2 Restless Counters.- 7.3 Sigmoidal Networks are Universal.- 7.3.1 Correctness of the Simulation.- 7.4 Conclusions.- 8 Different-limits Networks.- 8.1 At Least Finite Automata.- 8.2 Proof of the Interpolation Lemma.- 9 Stochastic Dynamics.- 9.1 Stochastic Networks.- 9.1.1 The Model.- 9.2 The Main Results.- 9.2.1 Integer Networks.- 9.2.2 Rational Networks.- 9.2.3 Real Networks.- 9.3 Integer Stochastic Networks.- 9.4 Rational Stochastic Networks.- 9.4.1 Rational Set of Choices.- 9.4.2 Real Set of Choices.- 9.5 Real Stochastic Networks.- 9.6 Unreliable Networks.- 9.7 Nondeterministic Stochastic Networks.- 10 Generalized Processor Networks.- 10.1 Generalized Networks: Definition.- 10.2 Bounded Precision.- 10.3 Equivalence with Neural Networks.- 10.4 Robustness.- 11 Analog Computation.- 11.1 Discrete Time Models.- 11.2 Continuous Time Models.- 11.3 Hybrid Models.- 11.4 Dissipative Models.- 12 Computation Beyond the Turing Limit.- 12.1 The Analog Shift Map.- 12.2 Analog Shift and Computation.- 12.3 Physical Relevance.- 12.4 Conclusions.

The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. What emerges is a Church-Turing-like thesis, applied to the field of analog computation, which features the neural network model in place of the digital Turing machine. This new concept can serve as a point of departure for the development of alternative, supra-Turing, computational theories. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics.

The topics covered in this work will appeal to a wide readership from a variety of disciplines. Special care has been taken to explain the theory clearly and concisely. The first chapter review s the fundamental terms of modern computational theory from the point of view of neural networks and serves as a reference for the remainder of the book. Each of the subsequent chapters opens with introductory material and proceeds to explain the chapter’s connection to the development of the theory. Thereafter, the concept is defined in mathematical terms.

Although the notion of a neural network essentially arises from biology, many engineering applications have been found through highly idealized and simplified models of neuron behavior. Particular areas of application have been as diverse as explosives detection in airport security, signature verification, financial and medical times series prediction, vision, speech processing, robotics, nonlinear control, and signal processing. The focus in all of these models is entirely on the behavior of networks as computer.

The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Siegelman, Hava Siegelman-Technion, Haifa, Israel... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia