'Network Science introduces the reader to basic graph-theory notions, elements of data analysis, statistics, and some of the computational and modeling methods that allow us to interrogate network data sets. Throughout, the book illustrates those ideas with concrete and intuitive examples that also help achieve its main purpose, which is to instill network-based thinking in the reader. The writing is engaging, peppered throughout with stories, anecdotes, and historical connections ... Its discussion of the spread of disease in particular clearly illustrates the necessity of network thinking in solving a fundamental and practical problem that affects us all. The book is carefully structured and visually pleasing, with lots of colorful diagrams, figures, tables, and schematics to help convey fundamental concepts and ideas. Its pedagogical value is significantly enhanced by a Tufte-style exposition that recognizes and works with the nonlinear character of learning. The wide margins contain bits of information ... that expand on the main text.' Zoltán Toroczkai, Physics Today
Preface; Personal introduction; 1. Introduction; 2. Graph theory; 3. Random networks; 4. The scale-free property; 5. The Barabási–Albert model; 6. Evolving networks; 7. Degree correlation; 8. Network robustness; 9. Communities; 10. Spreading phenomena; Index.
Barabási, Albert-László
Albert-László Barabási is Robert Gray Dodge Professor of Network Science and Director of the Center for Complex Network Research at Northeastern University, with appointments at Harvard Medical School and the Central European University in Budapest. His work in network science has led to the discovery of scale-free networks and elucidated many key network properties, from robustness to control. He is a Fellow of the American Physical Society, the AAAS (Physics) and the Massachusetts Academy of Sciences, and is a recipient of numerous international awards.