ISBN-13: 9781846281754 / Angielski / Twarda / 2006 / 265 str.
ISBN-13: 9781846281754 / Angielski / Twarda / 2006 / 265 str.
The topic this book addresses originated from a panel discussion at the 2004 ACM SIGKDD (Special Interest Group on Knowledge Discovery and Data Mining) Conference held in Seattle, Washington, USA. We the editors or- nized the panel to promote discussion on how text mining and natural l- guageprocessing, tworelatedtopicsoriginatingfromverydi?erentdisciplines, can best interact with each other, and bene't from each other s strengths. It attracted a great deal of interest and was attended by 200 people from all over the world. We then guest-edited a special issue of ACM SIGKDD Exp- rations on the same topic, with a number of very interesting papers. At the same time, Springer believed this to be a topic of wide interest and expressed an interest in seeing a book published. After a year of work, we have put - gether 11 papers from international researchers on a range of techniques and applications. We hope this book includes papers readers do not normally ?nd in c- ference proceedings, which tend to focus more on theoretical or algorithmic breakthroughs but are often only tried on standard test data. We would like to provide readers with a wider range of applications, give some examples of the practical application of algorithms on real-world problems, as well as share a number of useful techniques."